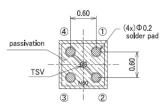
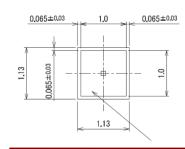

SiPM readout

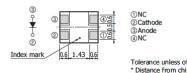

R. Santoro


Università degli Studi dell'Insubria (COMO) and INFN (Milano)

The sensors used were 25 μ m cell pitch (S13615-1025)

2,4 - 1,3 anode cathode

Parameters	S13	Unit	
Farameters	-1025	-1050	Onit
Effective photosensitive area	1.03	mm ²	
Pixel pitch	25	50	μm
Number of pixels / channel	1584	396	-
Geometrical fill factor	47	74	%


Parameters		Symbol	S13	Unit	
		Symbol	-1025	-1050	Unit
Spectral response range		λ	320 t	nm	
Peak sensitivity wavelength		λр	45	nm	
Photon detection efficiency at a	\p ^{*3}	PDE	PDE 25 40		%
Breakdown voltage		V _{BR}	53	V	
Recommended operating volta	ge ^{*4}	V _{op}	V _{BR} + 5 V _{BR} + 3		V
Dark Count	Тур.		5	kcps	
	Max.	- ax.	15		
Crosstalk probability	Тур.	-		3	%
Terminal capacitance		Ct	40		pF
Gain ^{*5}		М	7.0x10 ⁵	1.7x10 ⁶	-
				1	

New SiPMs under test

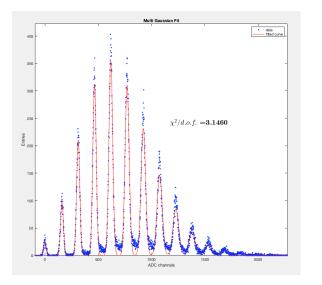
- Unfortunately Hamamtsu confirmed that this sensor is not available with a compact package.
 The actual doesn't fit the available space.
- □ Massimo already started to contact and to discuss this with other producers (i.e. ketek)

New sensors: S14160-1310PS / S14160-1315PS

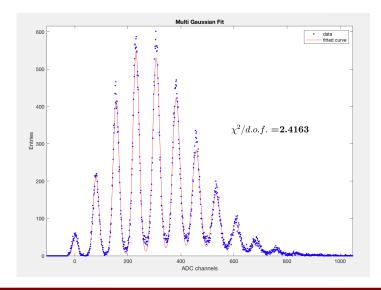
Parameter	Symbol	S14160				
	Symbol	-1310PS	-3010PS	-1315PS	-3015PS	Unit
Effective photosensitive area	-	1.3 × 1.3	3 × 3	1.3 × 1.3 🥟	3 × 3	mm
Pixel pitch	-		.0	1	.5	μm
Number of pixels	-	16675	90000	7296	40000	-
Geometrical fill factor	-		1	4	9	%
Package	-	Surface mount type				-
Window	-	Silicone resin				-
Window refractive index	-	1.57				-

Parameter Sy		Cumbol	S14160				Unit
		Symbol	-1310PS	-3010PS	-1315PS	-3015PS	Onic
Spectral response range	e	λ	290 to 900			nm	
Peak sensitivity waveler	ngth	λр	460				nm
Photon detection efficie	ency at λp*2	PDE	18 32		2	%	
Breakdown voltage*3		VBR	38±3				V
Recommended operatir	ng voltage*3	Vop	Vbr + 5 Vbr + 4		+ 4	V	
Vop variation within a r	eel	-	±0.1				V
Dark count rate*4	typ.	DCR	120	700	120	700	kcps
	max.		360	2100	360	2100	_ kcps
Direct crosstalk probab	t crosstalk probability Pct < 1			%			
Terminal capacitance at	t Vop	Ct	100	530	100	530	pF
Gain		M	1.8 × 10 ⁵		3.6 3	× 10 ⁵	-
Temperature coefficient of Vop		∆TVop		3	34		mV/°C

*2: Photon detection efficiency does not include crosstalk and afterpulses.


*3: Refer to the data attached for each product.

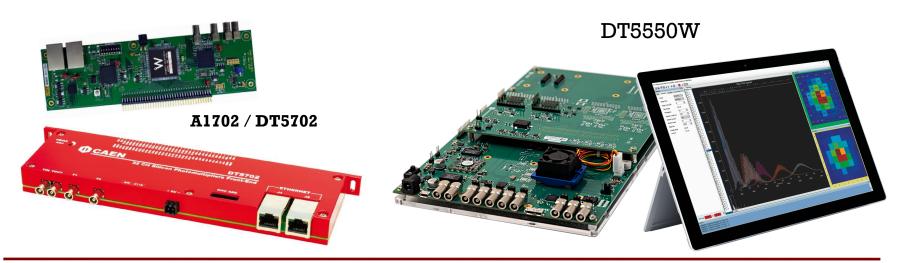
*4: Threshold=0.5 p.e.


A first look at the SiPMs

We tested the new SiPMs using our standard equipment (SP5600 and DT5720A from Caen) together with an automatic software tool developed to characterize SiPMs (JINST 10, C08008)

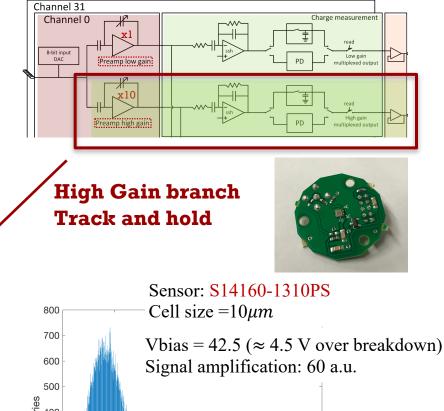
Sensor: S14160-1315PS Cell size =15 μ m Vbias = 42 (\approx 4 V over breakdown) Signal amplification: 40dB Measured Xtalk = 2%

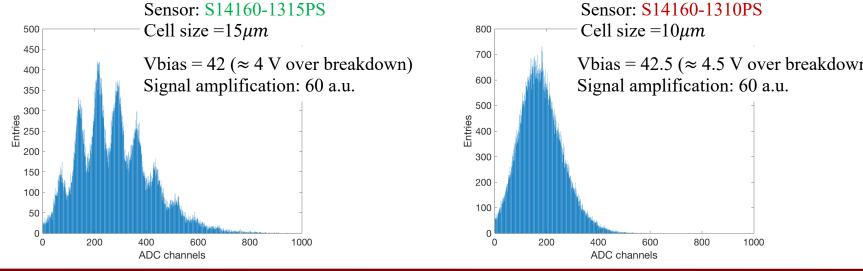
Sensor: S14160-1310PS Cell size =10 μm Vbias = 42.5 (\approx 4.5 V over breakdown) Signal amplification: 40dB Measured Xtalk = 1.8%

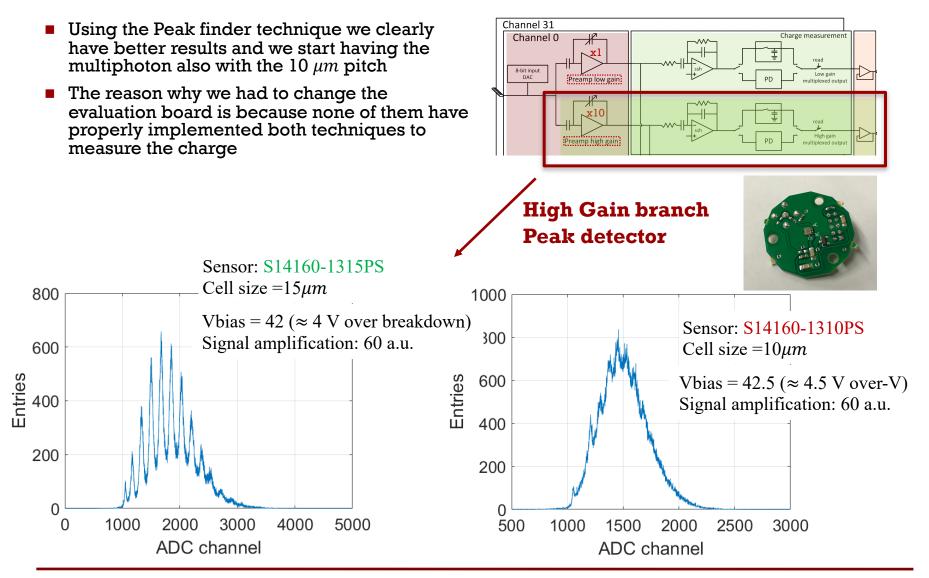


The evaluation boards

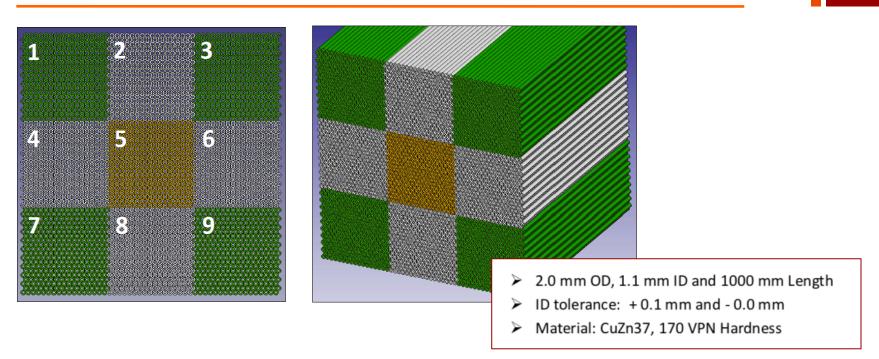
The qualification:


- Check the multiphoton with available SiPMs to assess the single photon capability (smaller pitch means larger dynRange but also smaller signal for ph-e)
- Measure the full dynamic range using both amplification branches
- Measure the front-end linearity

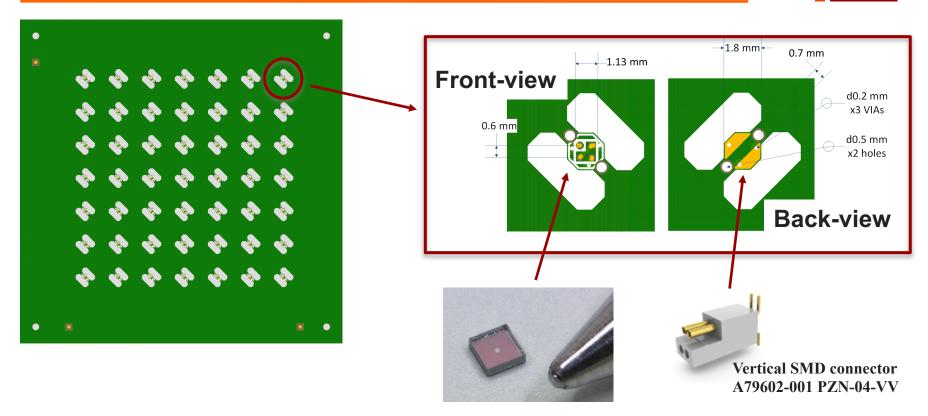



DT5702

- Even if with temporary connections, we can assess the multi-photon also with a15mu pitch sensor
- The reason why we don't see the multiphoton using the 10mu pitch is under investigation (i.e. connections, gain, bit granularity ...)



DT5550W


Test beam 2020

The prototype for the test beam

- 9 modules 16 x 20 tubes (2mm outer diameter) = 320 tubes
- 8 modules readout with PMTS
- The central module equipped with SiPMs
 - 320 SiPMs to be readout
 - 5 FERS board + 1 Data collector

A possible strategy for the assembly

- We start with an array of small front-end boards (1.8 x 1.8 mm² each) designed to host 1 SiPM and a connector on the back side
- The array is firstly populated with all the components and then each front-end board will be removed from the array and it will be qualified before the next step of the assembly

R. Santoro

A possible strategy for the assembly Front-end board + SiPM + connector Fiber (inserted into the tube) tube

- The front-end board + SiPM will be glued to the tip of the fiber
- Both the functionality and optical coupling for the basic unit will be qualified
- Once all tubes, equipped with the SiPMs, will be qualified the module assembly starts

A possible strategy for the assembly

At this stage it is just an idea, it is very preliminary and all the details has to be carefully verified but, if feasible, it has a lot of advantages

- The design of the front-end board is easy and cheap: it doesn't require any complex routing in the pcb board
- The individual SiPM can be qualified at each step of the assembly procedure
- We can guarantee a good contact between SiPMs and fibers: each individual tube can be qualified before the final assembly
- The tube assembly can be easily distribute among institutes (a must if we really want to go for larger and larger prototypes)
- In principle, the tubes are immune from cross-talk: we can also imagine glob top encapsulation on the back
- Once the tubes are qualified, they will be collected into specialized centers for the final assembly and qualification
 - the prototype module will have on the back a series of connectors and wires to be plugged into the FERS