Exclusive central diffractive production (ECDP): new results and key points

Roman Ryutin

LHC Working Group on Forward Physics and Diffraction
(16-17 December 2019, CERN)
ECDP kinematics and signatures

“HARD”

“SOFT”

\[\phi \]

\[\theta \]
ECDP kinematics and signatures

ECDP kinematics and signatures

“HARD”

“SOFT”

1. Two final protons => Missing Mass Method
2. Large Rapidity Gaps ~ diffraction signature
ECDP regimes and theoretical approaches

Reggeon-reggeon
(Pomeron-Pomeron)
fusion
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

M >> 1 GeV
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

$M \gg 1 \text{ GeV}$

Resummations, PDFs, …
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

Resummations, PDFs, ...

Sudakov-like corr. (no “soft” radiation).

M >> 1 GeV
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

Sudakov-like corr. (no “soft” radiation).

Resummations, PDFs, …

M >> 1 GeV

M ~ 3-10 GeV
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

Sudakov-like corr. (no “soft” radiation).

Resummations, PDFs, …

M >> 1 GeV

M ~ 3-10 GeV

M ~ 1 GeV

IR, IP

16-17 December 2019, CERN LHC Working Group on Forward Physics and Diffraction
R. Ryutin, IHEP, Protvino
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

Sudakov-like corr. (no “soft” radiation).
Resummations, PDFs, …

Possible final state “soft” interactions

$M \gg 1\text{ GeV}$

$M \sim 3-10\text{ GeV}$

$M \sim 1\text{ GeV}$
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

Sudakov-like corr. (no “soft” radiation).

Resummations, PDFs, …

Possible final state “soft” interactions

Reggeon-reggeon (Pomeron-Pomeron) fusion

M >> 1 GeV

M ~ 3-10 GeV

M ~ 1 GeV
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

Sudakov-like corr. (no “soft” radiation).

Unitarity \Rightarrow “soft surv. prob.”

Resummations, PDFs, …

Possible final state “soft” interactions

M >> 1 GeV

M \sim 3-10 GeV

M \sim 1 GeV

IR, IP

16-17 December 2019, CERN
LHC Working Group on Forward Physics and Diffraction
R. Ryutin, IHEP, Protvino
ECDP regimes and theoretical approaches

Reggeon-reggeon (Pomeron-Pomeron) fusion

M >> 1 GeV

Sudakov-like corr. (no “soft” radiation).

Resummations, PDFs, ...

< S^2 >

Unitarity => “soft surv. prob.”

IP-IP-IP, …, IR-IR-IR vertices

Possible final state “soft” interactions

IR, IP

M ~ 3-10 GeV

M ~ 1 GeV

16-17 December 2019, CERN

LHC Working Group on Forward Physics and Diffraction

R. Ryutin, IHEP, Protvino
ECDP key advantages

1. Two final protons \rightarrow Missing Mass Method
2. Large Rapidity Gaps \sim diffraction signature
ECDP key advantages

1. Two final protons \rightarrow Missing Mass Method
2. Large Rapidity Gaps \sim diffraction signature
3. $J_z = 0 \rightarrow$ Background suppression
ECDP key advantages

1. Two final protons → Missing Mass Method
2. Large Rapidity Gaps ~ diffraction signature
3. $J_z = 0$ → Background suppression
4. Diffractive patterns:
 * azimuthal picture, $d\sigma/d\phi$ → spin-parity analyser
ECDP key advantages

1. Two final protons \rightarrow Missing Mass Method

2. Large Rapidity Gaps \sim diffraction signature

3. $J_z = 0$ \rightarrow Background suppression

4. Diffractive patterns:
 * azimuthal picture, $d\sigma/d\phi$ \rightarrow spin-parity analyser
 * $d\sigma/dt$ \rightarrow size and shape of the interaction region
ECDP key advantages

1. Two final protons \rightarrow Missing Mass Method
2. Large Rapidity Gaps \sim diffraction signature
3. $J_z = 0$ \rightarrow Background suppression
4. Diffractive patterns:
 * azimuthal picture, $d\sigma/d\phi$ \rightarrow spin-parity analyser
 * $d\sigma/dt$ \rightarrow size and shape of the interaction region
5. Large cross-sections for low central masses
 (important for low luminosity runs)
ECDP: physics behind observables

Born term

Full result with all corrections

Spin-parity analyser

\[\eta' \]

\[f_1(1285) \]

\[|t_1-t_2| < 0.1 \text{ GeV}^2 \]

\[|t_1-t_2| > 0.2 \text{ GeV}^2 \]

\[f_0(980) \]

\[f_0(1500) \]

\[f_2(1270) \]

\[f_2(1950) \]

Figure 6: Results for the LHC energies. a) \(f_0(980), 0^{++} \); b) \(f_0(1500), 0^{++} \); c) \(f_2(1270), 2^{++} \); d) \(f_2(1950), 2^{++} \).
Size and shape of the interaction region

\[\frac{1}{\sigma} \frac{d\sigma}{dt} \]
ECDP: physics behind observables

Size and shape of the interaction region

slope $B \sim R^2/2$

$\frac{1}{\sigma}\frac{d\sigma}{dt}$

elastic

ECDP

16-17 December 2019, CERN
LHC Working Group on Forward Physics and Diffraction
R. Ryutin, IHEP, Protvino
Size and shape of the interaction region

\[\text{slope } B \sim R^2/2 \]

\[\frac{1}{\sigma} \frac{d\sigma}{dt} \]

\[s \uparrow, M_c \uparrow \]

ECDP: physics behind observables

ECDP

depend on different scales

elastic

ECDP

16-17 December 2019, CERN
LHC Working Group on Forward Physics and Diffraction
R. Ryutin, IHEP, Protvino
Size and shape of the interaction region

\[\text{slope } B \sim R^2/2 \]

Longitudinal size

\[\Delta x_L > \frac{\sqrt{s}}{2\sqrt{\langle t^2 \rangle}} > -\langle t^2 \rangle \]

Depend on different scales

\[
\frac{1}{\sigma} \frac{d\sigma}{dt}
\]

16-17 December 2019, CERN

LHC Working Group on Forward Physics and Diffraction

R. Ryutin, IHEP, Protvino
ECDP: physics behind observables

Size and shape of the interaction region

- slope $B \sim R^2/2$
- Dip position and depth $\Leftrightarrow \text{Re} \, T / \text{Im} \, T$

Depend on different scales

Longitudinal size

$$\Delta x_L > \frac{\sqrt{s}}{2\sqrt{\langle t^2 \rangle - \langle t \rangle^2}}$$

Graph showing the behavior of $1/\sigma$ with respect to dt, exhibiting different ECDP and elastic regions.
More sensitive variables = more exact verification

Born term $|M_B|^2 \sim e^{2B(t_1 + t_2)}$

Full result with all corrections

$t_1 + t_2$

$\delta^2 = (\Delta_1 - \Delta_2)^2 / 4.$
Low mass ECDP: di-pion continuum, interference with res.

Low mass ECDP: di-pion continuum, interference with res.

\[\hat{F}_\pi = e^{(\hat{t}-m_{\pi}^2)/\Lambda_{\pi}^2} \]

STAR

\(\Lambda_{\pi}, \text{GeV} \)

5
4
3
1.6
1.2

16-17 December 2019, CERN
LHC Working Group on Forward Physics and Diffraction
R. Ryutin, IHEP, Protvino
Low mass ECDP: di-pion continuum, interference with res.

\[\hat{F}_\pi = e^{\left(\frac{t-m_{\pi}^2}{\Lambda_{\pi}^2}\right)} \]

[CDF, CMS]

[16-17 December 2019, CERN
LHC Working Group on Forward Physics and Diffraction
R. Ryutin, IHEP, Protvino]
Low mass ECDP: di-pion continuum, “soft surv. prob.”

CMS 7 TeV

\[\frac{d\sigma}{dM_c}, \mu b/GeV \]
Low mass ECDP: di-pion continuum, "soft surv. prob."
Low mass ECDP: di-pion continuum, “soft surv. prob.”

CMS 7 TeV

\(\frac{d\sigma^{U}_{RF}}{dM_{c}} \), \(\mu b/GeV \)

\(M_{c}, \) GeV
Low mass ECDP: di-pion continuum, “soft surv. prob.”

CMS 7 TeV

\(\frac{d\sigma}{dM_c}, \mu b/\text{GeV} \)

\(M_c, \text{ GeV} \)
ECDP: reggeon-reggeon and reggeon-hadron interactions
ECDP: reggeon-reggeon and reggeon-hadron interactions

\[\sigma_{\pi p} \]

\[\sigma_{p^P (M^2; t)} \]
ECDP: reggeon-reggeon and reggeon-hadron interactions

\[\sigma_{\pi p} \]

\[\sigma_{pp}(M^2; t) \]

\[\sigma_{pp}(M^2, t_1, t_2) \]
ECDP: reggeon-reggeon and reggeon-hadron interactions

\[F_\theta \rightarrow \pi \]

\[S \rightarrow t_1 \]

\[T \rightarrow M \]

\[\sigma_{\pi p} \]

\[\sigma_{pp}(M^2; t) \]

\[\sigma_{pp} \rightarrow \pi \pi \sim 0.1 \div 5 \text{ } \mu b \ll \sigma_{pp}^{tot} \sim 100 \text{ } \mu b \text{ , } M=1-3 \text{ } \text{GeV} \text{ , } t_{1,2}=-0.1 \text{ } \text{GeV}^2 \]
ECDP: very low t, Coulomb-nuclear interference

Elastic, very low t
ECDP: very low t, Coulomb-nuclear interference

Elastic, very low t
ECDP: Odderon searches

\[p \rightarrow \varphi, \omega, \Omega \rightarrow \varphi, \omega, J/\psi \rightarrow p \]
ECDP: Odderon searches

\(p \rightarrow \varphi, \omega, \Omega \rightarrow \varphi, \omega, J/\psi \)

\(\gamma \rightarrow \varphi, \omega, J/\psi \)
ECDP: Odderon searches

\[p \rightarrow \varphi, \omega, \Omega \rightarrow \varphi, \omega, J/\psi \]

\[p \rightarrow \varphi, \omega, J/\psi \]

\[p \rightarrow \gamma \rightarrow \varphi, \omega, J/\psi \]

\[p \rightarrow \gamma \rightarrow \varphi, \omega, J/\psi \]

\[p \rightarrow C\text{-even state} \]

\[(A, Z) \]
ECDP: Odderon searches

\(p \rightarrow \varphi, \omega, \Omega \rightarrow p \)
\(p \rightarrow \gamma \rightarrow C\text{-even state} \rightarrow (A,Z) \)

\(p \rightarrow \varphi, \omega, J/\psi \rightarrow p \)
\(p \rightarrow \gamma \rightarrow C\text{-even state} \rightarrow p \)

\(p \rightarrow \varphi, \omega, J/\psi \rightarrow p \)
\(p \rightarrow \gamma \rightarrow C\text{-even state} \rightarrow p \)
Monte Carlo generator for Exclusive Diffraction
Version 2.2 will be available soon
Monte Carlo generator for Exclusive Diffraction
Version 2.2 will be available soon

Processes:
• elastic $p + p \rightarrow p + p$ at 7, 8, 13, 14 TeV
ECDP: simulation

Monte Carlo generator for Exclusive Diffraction
Version 2.2 will be available soon

Processes:
• elastic \(p + p \rightarrow p + p \) at 7, 8, 13, 14 TeV
• ECDP \(p + p \rightarrow p + \text{Res.} + p \)

\(\text{Res.}: \)
\[\eta_2(1645), \eta_0(1405) \text{ at } 13 \text{ TeV} \]
\[\eta_0(958), f_1(1285), f_2(1270) \text{ at } 8 \text{ TeV} \]
\[f_0(1500), f_0(1710), f_2(1950), f_2(2220) \text{ at } 8, 13 \text{ TeV} \]
Monte Carlo generator for Exclusive Diffraction
Version 2.2 will be available soon

Processes:
• elastic $p + p \rightarrow p + p$ at 7, 8, 13, 14 TeV
• ECDP $p + p \rightarrow p + \text{Res.} + p$

Res.:
$\eta_2(1645),\eta_0(1405)$ at 13 TeV
$\eta'(958), f_1(1285), f_2(1270)$ at 8 TeV
$f_0(1500), f_0(1710), f_2(1950), f_2(2220)$ at 8, 13 TeV
• ECDP $p + p \rightarrow p + \pi\pi + p$ at 7 TeV
Monte Carlo generator for Exclusive Diffraction
Version 2.2 will be available soon

Processes:
• elastic $p + p \rightarrow p + p$ at 7, 8, 13, 14 TeV
• ECDP $p + p \rightarrow p + \text{Res.} + p$

Res.:
- $\eta_2(1645), \eta_0(1405)$ at 13 TeV
- $\eta'(958), f_1(1285), f_2(1270)$ at 8 TeV
- $f_0(1500), f_0(1710), f_2(1950), f_2(2220)$ at 8, 13 TeV
• ECDP $p + p \rightarrow p + \pi \pi + p$ at 7 TeV

Linked to Pythia 8 (to make resonance decays and hadronization) and also to ROOT and HEPMC output via Pythia interface
Summary: we need huge work in theory and experiment
We have the process ECDP with clear signature and tools (azimuthal, \(t \) and other vars. distributions) to obtain many important parameters: spin, parity, size and shape of the interaction region, dependence on different scales.

Summary: we need huge work in theory and experiment
We have the process ECDP with clear signature and tools (azimuthal, t and other vars. distributions) to obtain many important parameters: spin, parity, size and shape of the interaction region, dependence on different scales.

We have no universal description of the process at the moment, and we have to consider different regimes and nuances (corrections) for theoretical calculations, which have more or less success in data fitting, but sometimes have no clear physical meaning.
Summary: we need huge work in theory and experiment

- We have the process ECDP with clear signature and tools (azimuthal, t and other vars. distributions) to obtain many important parameters: spin, parity, size and shape of the interaction region, dependence on different scales.
- We have no universal description of the process at the moment, and we have to consider different regimes and nuances (corrections) for theoretical calculations, which have more or less success in data fitting, but sometimes have no clear physical meaning.
- To clarify our understanding of Pomeron, Odderon, reggeons, and their interactions, we can extract hadron-reggeon and reggeon-reggeon cross-sections and also see additional processes where reggeons participate (Odderon-gamma, Odderon-Pomeron, …).
Summary: we need huge work in theory and experiment

- We have the process ECDP with clear signature and tools (azimuthal, t and other vars. distributions) to obtain many important parameters: spin, parity, size and shape of the interaction region, dependence on different scales.

- We have no universal description of the process at the moment, and we have to consider different regimes and nuances (corrections) for theoretical calculations, which have more or less success in data fitting, but sometimes have no clear physical meaning.

- To clarify our understanding of Pomeron, Odderon, reggeons, and their interactions, we can extract hadron-reggeon and reggeon-reggeon cross-sections and also see additional processes where reggeons participate (Odderon-gamma, Odderon-Pomeron, …).

- To study this process more deeply, we can use different kinematical modes, as in elastic scattering, for example, the region of interference of reggeon-reggeon and photon-photon processes.
Thank you