LHC-Crab Cavity R&D

KEK activities of the past one year and future prospects

Yoshiyuki Morita, KEK

Outline

- Drastic design change of Super-KEKB
 - High current option to nano-beam option
- LHC crab crossing for luminosity increase
- Crab cavity for LHC, design and construction
 - Baseline design for global crabbing
 - Compact crab cavity for local crabbing
 - Fabrication, surface treatments, cold tests, etc.
- Beam tests for LHC at KEKB
 - Crab noise tests and simulations
 - x-z coupling test
- Beam tests at SPS with KEKB-Crab
 - Transport our crab cavities to CERN
 - Beam test at SPS
- Future prospects

Drastic design change of Super-KEKB High current option to nano-beam option Beam Parameters Koiso-san, MAC2010

	KEKB Design	KEKB Achieved : with crab	SuperKEKB High-Current	SuperKEKB Nano-Beam	
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	3.5/8.0	4.0/7.0	
β _y * (mm)	10/10	5.9/5.9	3/6	0.27/0.42	
ε _x (nm)	18/18	18/24	24/18	3.2/2.4	
σ _y (μm)	1.9	0.94	0.85/0.73	0.059	
ξ _v	0.052	0.129/0.090	0.3/0.51	0.09/0.09	
σ _z (mm)	4	~ 6	5/3	6/5	
I _{beam} (A)	2.6/1.1	1.64/1.19	9.4/4.1	3.6/2.6	
N _{bunches}	5000	1584	5000	2503	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	53	80	

We have designed a new crab cavity for high current applications. However the nano-beam option needs no crabs.

LHC crab crossing Geometric luminosity reduction of finite angle crossing

Piwinski angle

$$\Phi = \frac{\theta_c \sigma_z}{2\sigma_x}$$

 Λ

Geometric luminosity reduction given by

 $R = \frac{1}{\sqrt{1 + \Phi^2}}$

To increase luminosity... If beta* reduced for nominal crossing angle...

 $\sigma_x \propto \sqrt{eta^*}$

If finite angle crossing, Modest luminosity increase because geometric reduction is large

If crab crossing applied...

Large geometric reduction can be recovered

Frank Zimmermann, LHC-CC09

LHC crab crossing Global crabbing and local crabbing staged implementation

Compact cavity US-LARP, EUCard, KEK for future local crab scheme

Tight space at IP

BNL TM010, BP Offset

KEK Kota Cavity

TEM-type Delayen and Wang

Delayen & Wang: "New compact TEM-type deflecting and crabbing rf structure" PRST-AB 12, 062002 (2009)

Requirements for LHC-Crab

- High crabbing voltage (2.5MV for global crabbing)
- High reliability (low trip rate)
- Invisible when no crabbing
 - Not to disturb LHC operation
- To develop the LHC-crab cavity
 - Need cavity R&D for high fields and low trip rate
 - Establish surface treatments for complicated structures
 - Need beam tests
 - To confirm reliability

Beam tests for LHC at KEKB

- Several beam tests were proposed
- Tow beam tests were conducted using the KEKB machine
 - Controlled RF noise study with the KEKB crab
 - Longitudinally kicked beam with crab cavities

Beam test 1

Controlled RF noise study with the KEKB crab

- Add controlled RF noise to the crab cavity
- Measure beam size and luminosity
- Controlled noise
 - Single frequency
 - Close to the horizontal betatron tune: v_x (~50kHz)
 - Far away from v_x
- Beam conditions
 - Single LER beam with a beam current of 100 mA
 - Single HER beam (100 mA)
 - Colliding beams (HER/LER: 65/100 mA)

HER, noise frequency=47.5kHz

Rogelio Thomas Garcia, LHC-CC09

LER CC noise close to Q_x (exp. vs sim.)

 \rightarrow Measurement and simulation in excellent agreement!

 \rightarrow Shocking abrupt luminosity loss at $4.5 \mu m \approx 0.02 \sigma_x^*$

KEK-B Crab-Experiments for the LHC & Super KEK-B - p.8/22

Beam test 2

Longitudinally kicked beam with crab cavities

- Longitudinal beam kick with ARES cavities
- Monitor beam position by Turn-by turn BPM (by Ohnishi-san)
 - BOR for backup (by Flanagan-san and Fukuma-san)

LER single beam: single bunch with 1 mA Turn-by-turn BPM at no dispersion

First obserbation of x-z coupling at Crab

General Remarks & Outlook

- Very fruitful experimental collaboration on Crab Cavities (thanks KEK for the beam!)
- Further analysis ongoing
- More experiments in KEK? (Funakoshi san just asked!)

Crab noise study for LHC was conducted by Funakoshi-san on Dec. 23, 2009. Several beam studies are under consideration in the next machine time 2010.

Beam tests at SPS with KEKB-Crab

- Required RF frequency: 510.6 or 511.0 MHz
 - KEKB-Crab: 508.887MHz
 - Can be tuned
- Required external Q: Qext=10⁶
 - KEKB-Crab: Qext=1.3-1.6 x 10⁵
 - Spare coupler~10⁶
- Transport KEKB-CC to CERN?
 - When?
 - How?
 - Cost?

	KEKB-Crab	@ SPS	comments	
RF frequency (MHz)	508.9	510.6 or 511.0	Can be tuned	
Qext	1.3-1.6 x 10⁵	~10 ⁶	Spare coupler~10 ⁶	

Beam tests at SPS with KEKB-Crab

Beam dynamics issues (global cc)

		Simulation	KEKB	SPS	LHC w/o cc	Tevatro n		
	Optics preparation	seems OK	-	-	-	-		
	b-b limit w∕ x-angle	OK	~0.06	OK	-	OK		
	Ramping w/ beam	OK (w/b-b?)	0	•	-	-		
0	Crab phase noise	Done?	OK	•	-	-		
	Impedance	tolerance	OK	•	-	-		
	Dynamics aperture	OK	OK	•	-	-		
	DA w/ long-range BB	OK	-	-	-	-		
	S-B resonances	OK	OK	•	-	-		
	Physical aperture	+ 0.5σ	-	•	-	-		
	Beam collimation	Maybe OK	-	•	-	-		
	Coherent oscillation	To be done	solved	-	-	-		
	Luminosity leveling	promising	0	-	-	-		
	AC dipole	OK 800MHz2	-	•	0	?		
	Head-tail osci. like crabbing	?	-	?	0	?		
	🔾 : can be tested, 🗨 : can be tested if cc is brought							

Future prospects

- Crab cavity
 - Fabrication, surface treatments and cold tests
 - Need to establish surface treatments
 - A new electro-polishing equipment is being constructed at KEK
 - Developing 800 MHz RF system for LHC-Crab R&D
 - How about funds?
 - Director of accelerator laboratory supports the activity
 - We are applying a scientific research grant in Japan
- Beam tests for LHC at KEKB
 - Discussing several beam tests at the next machine operation
 - Ramp-up of the crab cavity voltage with beam?
 - Variation of crab voltage for luminosity leveling?
- Beam tests at SPS with KEKB-Crab
 - Beam studies of crabbing with proton beams
 - Many beam studies with sufficient machine time ?
 - Without disturbing LHC operation

