Magnet Technology Development with Nb3Al Superconductor for SLHC

Akira YAMAMOTO and Tatsushi NAKAMOTO

KEK

CERN-KEK Committee, March 29, 2010

Advantage of Nb₃Al over Nb₃Sn

As of now, critical current density (Jc) of Nb3Sn is higher than Nb3Al. But,

Presented at MT-20 By A. Kikuchi et al.

Better mechanical performance of Nb3Al >> No degradation of Jc below 210 MPa. For Nb3Sn (RRP), Jc is decreased to be around half at 150 MPa. @B=12T Jc~3000 A/mm² --> 1350 A/mm² 2

Objective

For the new Inner Triplet SC Quads in the SLHC:
High field superconductor and cable made with Nb₃Al,
Superconductor uniquely developed in Japan.
Complementary to Nb₃Sn and magnet development at CERN and US-LARP.

- Model coils with Nb₃Al cable to demonstrate its feasibility at a field range of 13 T.

- Fundamental study

Neutron diffraction for Nb3Al at J-PARC High radiation resistant materials development

Participants / Collaborators

KEK:	N. Kimura, T. Nakamoto, T. Ogitsu, K. Sasaki,
	A. Terashima, K. Tsuchiya, Q. Xu, A. Yamamoto,
NIMS:	N. Banno, A. Kikuchi, T. Takeuchi

In cooperation of:

- CERN: L. Rossi, G. de Rijk, L. Bottura
- LBNL: G. Sabbi, S. Caspi et al.
- Fermilab: A. Zlobin, E. Barzi, R. Yamada

CEA/Saclay: B. Bourdy et al.

Jelly-Rolled Nb/Al Precursor Before RHQ

(a) <u>K1 strand</u> (partial Ta matrix)

(Nb skin, Nb central dummy, Ta interfilament)

(b) $\underline{K2 \ strand}$ (all Ta matrix)

(Ta skin, Ta central dummy, Ta interfilament)

OD : 1.35 mm, JR fil. num. : 222 JR fil. dia. : 70.4 μm, JR core : Nb Ta+Nb matrix ratio to JR fil. : 0.8 OD : 1.35 mm, JR fil. num. : 222 JR fil. dia. : 70.4 μm, JR core : Ta Ta matrix ratio to JR fil. : 0.8

J_c vs Magnetic Field

Magnetization Curves at 4.2 K

Dia 1.0 mm, Cu ratio 1.0, Twist Pitch 45 mm, B ramp 1 T/min, Temp. 4.2 K

Cable Fabrication at Fermilab

- 1st Cabling with ceramic insulation succeeded in Feb. 2009.
- K1 cable (w/ 28 strands): 22 m >> Coil winding
- K2 cable (w/ 27 strands): 9 m

High Field Nb3Al Subscale Magnet R&D

First goal of this program

—to fabricate 13 T small magnet for demonstrating the feasibility of high field magnet with Nb₃Al.

Item	Value
Operation current	12.1 kA
Peak field	13.1 T
Stored energy	71.8 kJ
Magnet Length	740 mm
Shell Dia.	680 mm
Nb3A1 Strand Dia.	1 mm
Cu/Non-Cu ratio	0.96
No. of Stands	28
Cable dimension	13.93*1.84 mm2
Cable Insulation	0.25 mm
Nb3Al Coils No.	3
Turns No. per layer	14
Layers No. per coil	2
Nb3Sn Coils No.	2
Turns No. per layer	20
Layers No. per coil	2

Present Status

- Coil Fabrication -

- The 1st practice coil winding w/ NbTi cable was completed.
- Heat reaction at 800 °C for 10 hours in a vacuum furnace was done to check uniformity of temperature. Vacuum impregnation is ready.
- Following another practice winding, the 1st Nb3Al coil will be completed soon.

- Resin Development-

- Radiation resistant resin of Cyanate Ester has been newly developed for the Nb3Al coil toward high field accelerator magnet.
- Spec.
 - low viscosity
 - control of solidification
 - mechanical strength

Neutron Diffraction at J-PARC

• The **''lattice parameter''** can be determined by the neutron diffraction J-PARC:

- Strain of Nb3Al and Nb3Sn wires,
- Strain distribution of the coil or 10-stacked cables,
- at 4 K to RT.

• In collaboration with JAEA-ITER group, the cold tensioner (4K, 50kN) is being developed and will be ready for measurement in JFY2010.

Cold tensioner for neutron diffraction

• The first measurement of Nb3Al is planned in May 2010.

Development Plan

				· · · · · · · · · · · · · · · · · · ·		
	JFY06	JFY07	JFY08	JFY09	JFY1 0	JFY11
Strand with Cu stabilizer						
Cabling						
R&D for Long Wire Production						
Model Magnet Design, Prep.						
Model Magnet Fabrication						
Test & evaluation						
Acc. Magnet Model (Phase II)						
Fundamental Study						11

New Budget Proposal

(Unit: kJYen)

	JFY2009	JFY2010	JFY2011		
Nb3Al wires, Subscale Magnet R&D	21,000	20,500	14,300		
Long wire R&D (New)					
Fundamental Study	31,000	7,500	4,700		
Travel, etc,	2,000	2,000	2,000		
		Already approve			
Total	54,000	30,000	21,000		
	New budget r	equest for			

~10 km long wire production.

* Technological review for KEK-NIMS activities in JFY2009 was already made before this committee. The money transfer from CERN for JFY2010 was completed in this March.
* Travel expenses for CERN researchers coming to KEK is expected as the different item. 12

Summary

• The first Rutherford-type Nb3Al cable (K1) was successfully fabricated. The K3&K4 wires are being developed and cabling is anticipated May 2010. Fabrication of K5 precursor is underway.

- The first practice coil winding for 13 T Nb3Al sub-scale magnet was done. The first Nb3Al coil will be fabricated soon.
- Neutron diffraction measurement to study strain sensitivity on Nb3Al will be started May 2010 at J-PARC.
- Several studies regarding radiation resistance are underway: -Cyanate ester resin, neutron irradiation at cold.
- R&D toward 10 km long SC wire production is to be started in JFY2010. Technical review for a new budget request is anticipated within JFY2010.

Nb3Al: Rapid Heating Quench Method

Cu Stabilized Nb₃Al Strands with Different Matrix

This work

This work

Development of Nb3Al Strands

	•				JFY2009-	IFY2010-
	JFY20	007-2008	JFY2008-2009		2010	2011
	K2	K1	K4	K3	K5	K6
Wire No.	(ME492)	(ME493)	(ME502)	(ME501)		
Matrix material	Та	Ta	Та	Та	Ta	TBD
Core & Skin material	Ta, Ta	Nb, Nb	Nb, Ta	Nb, Nb	Nb. Nb	TBD
Matrix ratio	0.8	0.8	0.95	0.8	0.89	TBD
Num of filaments	222	222	222 (241)	294 (313)	222 (241)	TBD
# of wire breaking	7	4	0	~10		
DUO						
RHQ	1.25	1.25	1.25	1.25	1.25	TDD
Wire dia (mm)	1.35	1.35	1.35	1.35	1.35	TBD
Filam dia (mm)	69.8	69.8	66	60	67	TBD
Barrier thick(mm)	8	8	11	8	10.8	TBD
Twist pitch (mm)	0	0	54	54	54	TBD
RHQI(A)	202					
Final strand						
wire dia (with Cu)	1.00	1.00				
wire dia (white Cu)	0.72	0.71				
AR ratio (%)	72.00	72.00				
filament dia (mm)	37	36				
barrier thick (mm)	4.2	4.2				
twist pitch (mm)	45	45				
r i ()						
Non-Cu Jc (A/mm2)						
@ 10T with AR	1776	1563.5				
@ 12T with AR	1320	1202				
@ 15T with AR	785	761.4				
						D '
Application		Coll-A	Coil-C	Coil-B	Coil-D	Backup

Test @FRESCA Test @FRESCA??

Magnetization Curve at 1.9 K

Rectangular Rutherford Cable

(a) K1 cable (Cu ion-plating (<1 μ m) + Cu electroplating (150 μ m))

Number of strand: 28, Width: 13.96 mm, Thickness: 1.84 mm, Lay angle: 14.9 deg., Packing factor: 86.7 %

(b) K2 cable (Ni electroplating (<1 μ m) + Cu electroplating (150 μ m))

Number of strand: 27, Width: 13.93 mm, Thickness: 1.84 mm, Lay angle: 14.5 deg., Packing factor: 85.0 %

Proposal of K1 Cable Tests at FRESCA

Goals of the cable tests at FRESCA

The Nb₃Al cable tests at FRESCA will be a feasibility study of a high field Nb₃Al common coil magnet, which will be fabricated by 2011. We expect to get the following data from the cable tests at FRESCA.

- Quench current at 4.3 K and 1.9 K at high fields (7 10 T).
- Ramp rate dependence on the quench current at 10 T.
- Maximum current (I ramps) and stability threshold (B ramps) at low fields (0 – 6 T).
- RRR measured during cool down and/or warm up.

Quench stability study using spot heaters

Summary of Wire R&D 2009

(1) New designed K1 and K2 strands and cables were fabricated. K1 strand used a tantalum for only interfilament matrix and K2 strand used for all strand matrix. Other strand parameters were arranged as the same.

(2) In this work, the wire breaking happened frequently on the drawing of both precursors, and it may be caused by the de-bonding of interfilament as well as a less cold-workability of a tantalum itself.

(3) Non Cu Jc's at 12 T were 1,300 A/mm² at 4.2 K and 1,600 A/mm² at 1.9 K, and its improvement was about 20 %. The difference of strand matrix did not remarkably influence to the critical current density.

(4) The low field magnetic instabilities at 4.2 K could be suppressed on K1 and K2 strands because of the tantalum interfilament matrix. To reduce magnetic instabilities in low fields at 4.2 K, a tantalum interfilament matrix is effective predominantly.

(5) **Rectangular K1 and K2 Rutherford cables** with a similar geometry were fabricated using a compact cabling machine at Fermilab. A remarkable copper separation happened on K2 cable, although it did not apparently on K1 cable. The copper stabilizer prefers a niobium as an interface material to obtain a good bonding.

(6) A 22 m long K1 cable could be fabricated, and it will be used for the one of double pancake Nb₃Al coils in the near future. For another Nb₃Al coils, we are going to fabricate additional Nb₃Al strands and cables, which are based on a modified K1 design. The improvement of a cold-workability of precursors is necessary as well as that of the critical current density. ²¹

Budget Detail – Revised

(Unit: kJYen)

		JFY 2009	2009 closing (prediction)	JFY 2010	JFY 2011
Magnet R&D		Covered by	1200	1000	0
	Jigs, Yoke, Shell	another grant	1300	1000	U
	Coil	3000	1400	3000	1500
	PS, DAQ, Cryostat	2000	0	1000	2000
Wires and	Completion of electroplating for				
cable for the	wires07-08	6000	6900	0	0
magnet	Wires(1 km)	8000	6600	10000	3000
8		Fermilab	Fermilab	Fermilab	Fermilab
	Cabling	Collab.	Collab.	Collab.	Collab.
	consumable	2000	1600	500	800
	Long wire production	0	400	5000	7000
Fundamental Study	15T Solenoid, Jc Stress Depend.	17000	15200	2000	1000
	Thermal conductivity meas.	0	2600	1000	1000
	Cvanate ester resin	1000	1000	1500	700
	Cold tensioner for n diffraction	9000	9800	1500	1000
	Short strand R&D	4000	4700	1500	1000
Travel					
Expenses		2000	1500	2000	2000