Detector options for a low energy electron-ion collider at BNL - MeRHIC

Matthew A. C. Lamont BNL

2×200 m SRF linac 4 (5) GeV per pass 5 (4) passes eRHIC Gap 5 mm total **Polarized** detector 0.3 T for 30 GeV e-gun 10-20 GeV e x 325 GeV p Beam MERHIC Coherent e.cooler 130 GeV/u Au detector dump possibility of 30 GeV @ low current operation IP12 IP10 IP2 20 GeV e-beam Common vacuum chamber 16 GeV e-beam IP8 IP4 12 GeV PHENIX IP6 e-beam 8 GeV e-beam **STAR** 4 to 5 vertically separated recirculating passes BROOKHAN macl@bnl.gov NATIONAL LABORATORY

MeRHIC @ BNL

Designs evolve with time

Latest IR Design for MeRHIC

No synchrotron shielding included

Detector requirements from physics

e+p physics

- ► Need the same detector for inclusive (ep \rightarrow e'X), semi-inclusive (ep \rightarrow e'X + hadrons) and exclusive (ep \rightarrow e'p+ π) reactions
 - Need to have a large acceptance (*both* mid- and forward-rapidity)
 - Crucial to have particle identification
 - = e, π , K, p, n over wide momentum range and scattering angles
 - excellent secondary vertex resolution (charm)
 - small systematic uncertainty for e/p polarisation measurements
 - small systematic uncertainty for luminosity measurements
- e+A physics
 - most requirements similar to e+p guidelines
 - additional complication arises from the need to tag the struck nucleus in exclusive and diffractive reactions
- Also, important to have the same detector for all energies

PYTHIA MC Generator - diagnostic plots

- Analysis of electron scattering angle in PYTHIA
 - higher energy electrons go at smaller angles wrt beam axis
 - harder to detect!!
 - independent of hadron energy

PYTHIA MC Generator - radiative corrections

PYTHIA MC Generator - radiative corrections

with radiative corrections

- Radiative corrections (via RADGEN)
 - Smear the t calculation at the ρ vertex
 - t calculated from the proton vertex is unaffected but harder to measure experimentally
 - need a proton spectrometer

RAPGAP kinematics: scattered proton (diffractive)

First attempt at detector design

- Dipoles need to have good forward momentum resolution
 - Solenoid has no magnetic field for $r \rightarrow 0$
- RICH, DIRC for hadron pid
- High threshold Cherenkov → fast trigger for scattered lepton
- Radiation length very critical → low lepton energies

MeRHIC Detector in Geant 3

DIRC is present but not seen

due to position of cut

11

MeRHIC detector in Geant 3

MeRHIC detector in Geant 3

B

Designs evolve with time (part 2)....

Staging all-in tunnel eRHIC: energy of electron beam is increasing¹⁴

from 5 GeV to 30 GeV by building-up the linacs

CENTER OF RING

Incorporating eSTAR and ePHENIX

- Without changing the DX-D0 focusing magnets, the luminosity in e+h collisions will be lower (x10)
- Parallel operations of both h+h and e+h collisions does now allow cooling of the beam and hence the luminosity will be lower (x10)
 - Running in sequential mode (alternate years) allows running at full luminosity, including coherent electron-cooling (CeC)
- CeC would provide for an increase in luminosity of x10 for e+h collisions and x6 for polarised p+p collisions
 - Two designs of the IR exist for both low luminosity (~ 3x10³³) and high luminosity (~ 2x10³⁴)
- By using a crossing angle (and crab cavities), one can have energy-independent geometries for the IRs and no synchrotron radiation in the detectors

STAR: A Correlation Machine

Kinematics at 4+100

4+100 open kinematics: scatters the electron and jet to mid-rapidity Forward region (FMS): Electron either $Q^2 < 1$ GeV, or very high x and Q^2 Jet either very soft or very hard

Note: current thinking has hadron in the blue beam: optimized for high x and Q²

Current PHENIX setup

MPC	3.1 < η < 3.9
	2.5° < ⊖ < 5.2°
Muon Arms	1.2 < η < 2.4
South:	12° < 🛛 < 37°
North:	10° < Θ < 37°
Central Arms	η < 0.35
	60° < 🖂 < 110°

electrons will not make it to the south muon arm \rightarrow to much material

What will the current PHENIX see?

What will the current PHENIX see?

NATIONAL LABORATORY

What could an ePHENIX look like? \Box Coverage in $|\eta| = < 3 \rightarrow 0.1 < Q^2 < 100 (5^\circ - 175^\circ)$

What could an ePHENIX look like? \Box Coverage in $|\eta| = \langle 3 \rightarrow 0.1 \langle Q^2 \langle 100 (5^\circ - 175^\circ) \rangle$

222I

Summary and Outlook

- Lots of MC generators at BNL (anyone can use) for study of detector geometries
 - spin: gmc_trans, PEPSI; low-x: PYTHIA, RAPGAP; e+p, e+A: xDVMP
- Work underway in implementing detector designs in GEANT to study with the generated events
 - Need to implement the Roman-Pot design into the geometry
- Working closely with the C-AD department for the design of the interaction regions
- Looking at the possible use of eSTAR and ePHENIX concepts
 - eSTAR looks promising and the STAR geometry is in the same format as what we are using for our other studies
 - a possible ePHENIX is not really viable with the current setup
 - thoughts of a future, upgraded PHENIX are being put forward to deal with jet physics in heavy-ion collisions
 - would be much better in the era of ePHENIX but still some problems persist

BACKUP SLIDES

A High-Luminosity EIC at JLab - Concept

Overview of central detector layout

- IP is shown at the center, but can be shifted left
 - Determined by desired bore angle and forward tracking resolution
 - Flexibility of shifting IP also helps accelerator design at lower energies (gap/path length difference induced by change in crossing angle)

Detector/IR cartoon Make use of a 100 mr crossing angle for ions!

Pion Scattering Angle (deg)