Recent Results on Nuclear Structure Functions

S. Kulagin

INR Moscow, Russia <u>R. Petti</u>

University of South Carolina, Columbia SC, USA

DIS 2010, Firenze, April 22nd, 2010

<u>OUTLINE</u>

- I A Quantitative Model of Nuclear Structure Functions
- Incoherent Nuclear Scattering;
- Nuclear Pion Correction;
- Coherent Nuclear Effects;
- ✦ The Off-shell Correction.
- II Comparison with Recent Charged Lepton Data
- Consistency of Measurements from Different Experiments;
- Comparison with JLab E03-103 and HERMES Data;
- ← The ³He Data and the Ratio F_2^n/F_2^p .

III Comparison with Neutrino Data

- Effects of the Axial-Vector Current;
- ✤ Isospin and C Dependence;
- Comparison with NuTeV and CHORUS Data;

IV Summary

NUCLEAR STRUCTURE FUNCTIONS

GLOBAL APPROACH aiming to obtain quantitative calculations covering the complete range of x and Q^2 available (S. Kulagin and R.P., NPA 765 (2006) 126-187):

- Scale controlling nuclear processes $L_I = (Mx)^{-1}$ Distance between nucleons $d = (3/4\pi\rho)^{1/3} \sim 1.2Fm$
- $L_I < d$ For x > 0.2 nuclear DIS \sim incoherent sum of contributions from bound nucleons
- $L_I \gg d$ For $x \ll 0.2$ coherent effects of interactions with few nucleons are important

DIFFERENT EFFECTS

on structure functions (SF) are taken into account:

$$F_i^A = F_i^{p/A} + F_i^{n/A} + F_i^{\pi/A} + \delta F_i^{\text{coh}}$$

- $F_i^{p(n)/A}$ bound proton(neutron) SF with Fermi Motion, Binding (FMB) and Off-Shell effect (OS)
- $F_i^{\pi/A}$ nuclear Pion excess correction (PI)
- δF_i^{coh} contribution from coherent nuclear interactions: Nuclear Shadowing (NS)

INCOHERENT NUCLEAR SCATTERING

FERMI MOTION AND BINDING in nuclear structure functions can be calculated from the convolution of nuclear spectral function and (bound) nucleon SFs:

$$F_2^A(x,Q^2) = F_2^{p/A} + F_2^{n/A}$$

$$F_2^{p/A} = \int d\varepsilon \, d^3 \mathbf{k} \, \mathcal{P}_p(\varepsilon,\mathbf{k}) \left(1 + \frac{k_z}{M}\right) F_2^p(x',Q^2,k^2)$$
where $x' = Q^2/(2k \cdot q)$ and $k = (M + \varepsilon,\mathbf{k})$.

♦ Since bound nucleons are OFF-MASS-SHELL there appears dependence on the nucleon virtuality $k^2 = (M + \varepsilon)^2 - \mathbf{k}^2$:

$$F_2(x, Q^2, k^2) = F_2(x, Q^2) \left(1 + \frac{\delta f_2(x)(k^2 - M^2)}{M^2} \right).$$

where we have introduced an off-shell structure function $\delta f_2(x)$

+ Hadronic/nuclear input:

- Proton/neutron SFs computed in NNLO pQCD + TMC + HT from fits to DIS data
- Two-component nuclear spectral function (mean-field + correlated part) based on Ciofi & Simula

THE OFF-SHELL FUNCTION

- ◆ Universal off-shell structure function δf(x) describing the modification of the bound nucleon in the nuclear medium
 - ⇒ Response to the local nuclear environment (from spectral function)
- Parameterization of $\delta f(x)$ extracted phenomenologically from nuclear DIS data:
 - $C_N(x-x_0)(x-x_1)(1+x_0-x)$
 - $\implies x_0 \text{ and the slope } \delta f'(x_0) \text{ suggest}$ an increase of the radius of nucleon valence region by $\sim 10\%$ in Fe
- Interesting to check the universality of δf for all partons, which was suggested by normalization of nuclear valence number

NUCLEAR PION CORRECTION

+ Leptons can scatter off mesons which mediate interactions among bound nucleons:

$$F_i^{\pi/A}(x,Q^2) = \int_x dy \, f_{\pi/A}(y) F_i^{\pi}(x/y,Q^2)$$

• Contribution from nuclear pions (mesons) to balance nuclear light cone momentum $\langle y \rangle_{\pi} + \langle y \rangle_{N} = M_{A}/(A M)$. The pion distribution function is localized at $y \leq p_{F}/M \sim 0.3$ so that the pion contribution is at x < 0.3. The correction is driven by the average number of "pion excess" $n_{\pi} = \int dy f_{\pi}(y)$ and $n_{\pi}/A \sim 0.1$ for heavy nuclei. It modifies the nuclear sea quark distributions, but not the valence quarks.

+ Hadronic/nuclear input:

- Pion Parton Density Functions from fits to Drell-Yan data by Gluck, Reya & Schienbein
- $f_{\pi/A}(y)$ calculated using constraints of light-cone momentum conservation and equations of motion for pion-nucleon system

COHERENT NUCLEAR EFFECTS

SHADOWING correction comes from multiple interactions of the hadronic component of virtual photon during the propagation through matter. This is described following the Glauber-Gribov approach:

$$\mathcal{C}_{2}^{A}(\mathbf{a}) = \int_{z_{1} < z_{2}} d^{2}\mathbf{b} dz_{1} dz_{2} \rho_{A}(\mathbf{b}, z_{1}) \rho_{A}(\mathbf{b}, z_{2}) \exp\left[i \int_{z_{1}}^{z_{2}} dz' \left(\mathbf{a} \rho_{A}(\mathbf{b}, z') - k_{L}\right)\right]$$

 $a = \sigma(i + \alpha)/2$ is the (effective) scattering amplitude ($\alpha = \operatorname{Re} a/\operatorname{Im} a$) in forward direction, $k_L = Mx(1 + m_v^2/Q^2)$ is longitudinal momentum transfer in the process $v^* \to v$ (accounts for finite life time of virtual hadronic configuration).

+ Hadronic/nuclear input:

• Nuclear number densities $\rho_A(r)$ from parameterizations based on elastic electron scattering data

CONSISTENCY OF DIFFERENT EXPERIMENTS

- Shapes of all nuclear cross-section ratios are consistent
- Evaluate χ² for each pair of experiments in coarse x-bins within the overlap region of the data sets
- Consistent overall normalization for SLAC E139, NMC and HERMES data sets;
- ★ The new JLab E03-103 data is systematically above previous measurements resulting in a χ²/d.o.f. = 42.7/12 with respect to SLAC E139 data on the same targets
- ★ An overall normalization factor 0.98 for all JLab points improves the statistical consistency with SLAC E139 data to $\chi^2/d.o.f. = 8.8/12$

PREDICTIONS FOR JLAB E03-103

- ◆ Apply overall normalization factor 0.98 to JLab data on ⁴He/D, ⁹Be/D and ¹²C/D
 ⇒ Offset statistically consistent with quoted normalization uncertainties
- ♦ Very good agreement of our predictions with JLab E03-103 for all nuclear targets: χ²/d.o.f. = 26.3/60 for W² > 2 GeV² S. Kulagin and R.P., arXiv:1004.3062 [hep-ph]
- No free parameter in the model since the description of the nucler target is incorporated into the spectral function
- A comparison with the Impulse Approximation demonstrates the off-shell correction is crucial to describe the data
 - ⇒ Mechanism for modification of bound nucleon parton structure in nuclei

PREDICTIONS FOR HERMES

- ◆ Very good agreement of our predictions with HERMES data for ¹⁴N/D and ⁸⁴Kr/D with $\chi^2/d.o.f. = 14.7/24$
- A comparison with NMC data for ¹²C/D shows a significant Q² dependence at small x in the shadowing region related to the cross-section for scattering of hadronic states off the bound nucleons nucleons
 - \implies The model correctly describes the observed x and Q^2 dependence

THE ${}^{3}\text{He}/\text{D}$ DATA AND F_{2}^{n}/F_{2}^{p}

 The proton excess in ³He implies a large non-isoscalarity correction:

$$C_{\rm is} \equiv \frac{AF_2^{(p+n)/2}}{ZF_2^p + NF_2^n}$$

 \implies Verify different assumptions for $C_{\rm is}$

- ◆ Extract the ratio Fⁿ₂/F^p₂ from both JLab E03-103 raw data on ³He/D and from the NMC data on D/p
- At x ~ 0.35, where nuclear corrections are negligible, the ratio F₂ⁿ/F₂^p from JLab is 15% higher than the one from NMC

$$\implies$$
 Overall normalization factor 1.03
for JLab 3 He/D

PREDICTIONS FOR ³He/D

◆ Apply normalization factor from F_2^n/F_2^p and our C_{is} correction to JLab raw data ⇒ Consistent normalization with HERMES measurement of (isoscalar) ³He/D

Use ³He spectral function with terms for bound pn deuteron intermediate state, pn continuum scattering states (*P*^p) and pp continuum scattering states (*P*ⁿ)
 R. Schulze and P. Sauer, Phys. Rev. C 48 (1993) 38

♦ Good agreement of our predictions with both JLab and HERMES ³He/D data

APPLICATION TO NEUTRINO SCATTERING

to the PCAC contribution $\left| \frac{R}{R} = \sigma_L / \sigma_T \right|$ does not vanish for $Q^2 \rightarrow 0$

S. Kulagin and R.P., Phys. Rev. D 76 (2007) 094023

⇒ Substantial difference with respect to charged lepton scattering.

C-PARITY AND ISOSPIN DEPENDENCE

- ◆ The effective amplitude for coherent scattering, $\begin{bmatrix} a_h^{(I,C)} \end{bmatrix}$, depends on the helicity of the boson h, on the isospin I of the target and on the C-parity:
 - γ^* only C-even while W both C-even and C-odd;
 - Differences between neutrinos and anti-neutrinos;
 - Nuclear isovector corrections beyond trivial isospin violations in nucleon SFs (heavy quark production, strange sea asymmetry etc.)
- ← Isoscalar and Isovector spectral functions, $|P_0|$ and $P_1|$, enter nuclear convolution

$$F_2^A/A = \langle \frac{F_2^p + F_2^n}{2} \rangle_0 + \frac{\beta}{2} \langle F_2^p - F_2^n \rangle_1 \qquad \beta = (Z - N)/A$$

PREDICTIONS FOR CHORUS AND NuTeV

+ Calculate weighted average (over E_{ν} and y) of data pulls as a function of x

 Our predictions for (anti)neutrino scattering consistent with NuTeV (Fe) and CHORUS (Pb) cross-section data over main kinematic range (band in plots ±2.5%).

+ Systematic excess observed for x > 0.5 in both ν and $\bar{\nu}$ NuTeV data on Fe

- Known problem and discrepancy between NuTeV and old CCFR data at large x on Fe target;
- CHORUS data on Pb target consistent with predictions at large x;
- Preliminary NOMAD data on carbon target seem to indicate no significant excess at large x.

	<i># of points</i>		χ^2/dof	
Cut	Neutrino	Antineutrino	Neutrino	Antineutrino
NuTeV (Fe)				
No cut	1423	1195	1.36	1.10
x > 0.015	1324	1100	1.15	1.08
x < 0.55	738	671	1.16	1.02
0.015 < x < 0.55	686	620	0.97	1.01
CHORUS (Pb)				
No cut	607	607	0.68	0.84
x > 0.02	550	546	0.55	0.83
x < 0.55	506	507	0.74	0.83
0.02 < x < 0.55	449	447	0.60	0.83

⇒ Fully independent model PREDICTIONS, NOT FIT!

- Good agreement of our predictions with the CHORUS differential cross-sections on Pb in the whole kinematic range
- Good agreement of our predictions with the NuTeV differential cross-sections on Fe in the main kinematic region 0.015 < x < 0.55

 Detailed semi-microscopic model including Fermi motion and binding energy, off-shell effect of bound nucleons, nuclear pion excess and shadowing correction

 \implies All parameters were fixed from independent studies

- New JLab E03-103 nuclear data consistent with previous measurements after applying overall normalization factors of 0.98 for ⁴He/D, ⁹Be/D and ¹²C/D and 1.03 for ³He/D
- Our predictions are in good agreement with the new nuclear data from both JLab E03-103 and HERMES for ³He/D, ⁴He/D, ⁹Be/D and ¹²C/D
- ◆ Our predictions for neutrino scattering off nuclei are in good agreement with cross-section data from CHORUS (Pb) in the whole kinematic region and from NuTeV (Fe) in the region 0.15 < x < 0.55</p>