N* Transition Form Factors with CLAS at Jefferson Lab

Kyungseon Joo

University of Connecticut

For the CLAS Collaboration

DIS 2010 Florence, Italy April 20, 2010

ferson Lab

University of Connecticut

The N* spectrum and its Classification

Electromagnetic Excitation of N*

1. Measure different exclusive processes

2. Measure polarization observables

Exclusive Processes in N* Studies

6

CEBAF at Jefferson Lab and CLAS

Electroproduction data and analyses from CLAS				
Reaction	W (GeV)	Q²(GeV²)	Observable	Physics extracted
$ep \rightarrow ep\pi^0$	1.1 - 1.4	0.4 - 1.8; 3 - 6	σ _T +ε _L σ _L , σ _{TT} , σ _{LT} ; dσ/dΩ	$\Delta(G_M, R_{EM}, R_{SM})$
$e^{p} \rightarrow ep\pi^{0}$	1.1 - 1.4	0.4 - 0.65	σιτ΄	Δ (G_{M} , R_{EM} , R_{SM})
$e p \rightarrow ep\pi^0$	1.1 - 1.4; 1.1 - 1.7	0.5 - 1.5; 0.19 - 0.77	A _t , A _{et}	Comparison to models
ep → enπ⁺	1.1 - 1.6	0.25 - 0.65	σ _Τ +ε _L σ _L , σ _{ΤΤ} , σ _{LΤ}	$\begin{array}{c} P_{11}(1440) \; (A_{1/2}, \; S_{1/2}), \\ D_{13}(1520) \; (A_{1/2}, \; A_{3/2}, \; S_{1/2}), \\ S_{11} \; (1535) \; (A_{1/2}, \; S_{1/2}) \end{array}$
e p → enπ⁺	1.3 - 1.5; 1.15 - 1.7	0.4 - 0.65; 1.72 - 4.16	σ _{LT} '; σ _T +ε _L σ _L , σ _{TT} , σ _{LT} , σ _{LT} '	$\begin{array}{c} P_{11}(1440) \; (A_{1/2}, S_{1/2}), \\ D_{13}(1520) \; (A_{1/2}, A_{3/2}, S_{1/2}), \\ S_{11} \; (1535) \; (A_{1/2}, S_{1/2}) \end{array}$
$e p \rightarrow en\pi^{+}$	1.12 - 1.84	0.35 - 1.5	(A ₁ + ηA ₂)/(1+εR)	Comparison to models
ep → epŋ	1.5 - 1.86	0.25 - 1.5	σ, dσ/dΩ → Legendre coeff. in $σ_T + ε_L σ_L$, $σ_{TT}$, $σ_{LT}$	S ₁₁ (1535) (A _{1/2} , S _{1/2})
ep → epŋ	1.5 - 2.3	0.13 - 3.3	$ σ, dσ/dΩ → Legendre coeff. in σ_T + ε_L σ_L, σ_{TT}, σ_{LT} + σ_{TT}/σ, σ_{LT}/σ $	S ₁₁ (1535) (A _{1/2} , S _{1/2}) + further PWA
ер → ерπ⁺π⁻	1.4 - 2.1; 1.3 - 1.57	0.5 - 1.5; 0.2 - 0.6	Simultaneous fit of do/d0 and do/dM	P ₁₁ (1440), D ₁₃ (1520), P ₁₃ (1720), D ₃₃ (1700)
$e^{}$ p $\rightarrow e^{K^{+}\Lambda}$	1.6 - 2.15	0.3 - 1.5	Λ transferred pol. P' _{x'} , P' _{z'}	Comparison to models
$ep \rightarrow eK^{*}\Lambda, K^{*}\Sigma^{0}$	1.6 - 2.4	0.5 - 2.8	σ _T , σ _L , σ _{TT} , σ _{LT}	Comparison to models
$\vec{e} p \rightarrow eK^{+}\Lambda$	1.65 - 2.05	0.65, 1	σ _{LT}	Comparison to models
				8

Legendre Moments of σ_T + $\epsilon\sigma_L$

 $P_{11}(1440)$ contributions to Leg. Mom. of $\sigma_T + \varepsilon \sigma_L$

Integrated Target and Beam-Target Asymmetries

The asymmetries are integrated over θ^* and ϕ^* in the Q² range from 0.187 to 0.770 GeV² and will further reduce the model dependence of the extracted resonance parameters.

How N* electrocouplings can be accessed

 $A_{3/2}, A_{1/2}, S_{1/2}$

 G_M, G_F, G_C

- Isolate the resonant part of production amplitudes by fitting the measured observables within the framework of reaction models, which are rigorously tested against data.
- These N* electrocouplings can then be determined from resonant amplitudes under minimal model assumptions. \uparrow π , η , $\pi\pi$.

 $\pi, \eta, \pi\pi,...$

Used Dispersion relations (DR) and Unitary Isobar Model (UIM) Fits

N'

$\gamma^* p \rightarrow \Delta(1232) P_{33}(1232)$: R_{EM} and R_{SM}

- $$\begin{split} R_{EM} &= E_{1+\!/}M_{1+} \\ R_{SM} &= S_{1+\!/}M_{1+} \end{split}$$
- ✓ R_{EM} < 0 favors oblate shape of the ∆, prolate shape of the nucleon at large distances
- Scattering off massless fermions: Helicity is conserved, thus
- ✓ $A_{3/2} = 0$ → $R_{FM} \rightarrow 1, R_{SM} \rightarrow const$

We are still far from pQCD asymptotia

(not shown here) LQCD calculations: encouraging, work in progress...

$\gamma^* p \rightarrow \text{Roper P}_{11}(1440)$ Helicity amplitudes

- Sign change of A_{1/2}
- Gluonic excitation ruled out due to Q² dependence of both amplitudes.
- High Q² behavior consistent with radial excitation of the nucleon as in CQM

S₁₁(1520) Helicity amplitudes

- Hard A $_{1/2}$ form factor confirmed (Slow fall-off as Q²)
- First measurement of S_{1/2}. Sign inconsistent with CQM.

Helicity Amplitudes for $\gamma^*p \rightarrow D_{13}(1520)$

- Rapid switch of helicity structure from $A_{3/2}$ dominance to $A_{1/2}$ dominance at Q²>0.6 GeV²

CLAS12 - Detector

Summary

•New accurate measurements on Q² dependence of transition form factors of low lying excited states of the nucleon.

•More analysis results on transition form factors of higher mass states.

•Extensive program is underway with polarized photon beams and polarized targets to search for new baryon states.

•Approved proposal for a transition form factor program at high Q_2 at the Jlab 12 GeV upgrade with CLAS12.