

Diffraction Results from CDF

Christina Mesropian

DIS2010 Firenze, Italy

Introduction

- □ Single Diffraction
 - Diffractive W/Z Production

Exclusive Central Production

- Exclusive Dijets
- Exclusive diphotons
- $\Box \qquad \text{Exclusive } \chi_c$

Introduction

Single Diffraction	Double Diffraction	Single + Double Diffraction	Double Pomeron Exchange
φ η	φ η	φ η	φ η

Diffractive interactions at hadron colliders are defined as those in which no quantum numbers are exchanged between the colliding particles Christina Mesropian DIS2010

CDF II Detectors

- four-momentum transfer squared
- ξ fractional momentum loss of antiproton
- M_x mass of system X

$$\xi = M_{\chi}^2/s$$

Selection of Diffractive Events

- CDF Roman Pots acceptance ~80% for 0.03<ξ_{pbar}<0.10, |t_{pbar}|<1(GeV/c)²
 - by presence of rapidity gap

• Determine ξ using Roman Pot Spectrometer tracking

Υ Also can determine ξ from E_T in calorimeters

Main challenge: multiple interactions spoiling diffractive signatures use $\xi^{cal} < 0.1$ to reject overlap events \rightarrow non-diffractive contributions

Methods

Diffractive W/Z Production

Diffractive W/Z production probes the quark content of the Pomeron

 to Leading Order the W/Z are produced by a quark in the Pomeron

Diffractive W – previous results

- Run I studies used rapidity gap method
- instead of Roman-pots
- CDF Phys Rev Lett 78, 2698 (1997)
 - Fraction of W events due to SD
 [1.15 0.51(stat) 0.20(syst)]%
 - Observed fraction of events with a jet consistent with production via quarks
- DØ Phys Lett B **574**, 169 (2003)
 - Fraction of events with rap gap (uncorrected for gap survival)
 - W: $[0.89^{+0.19}_{-0.17}]\%$
 - Z: [1.44^{+0.61}_{-0.52}]%

Identify diffractive events using Roman Pots:

accurate event-by-event ξ measurement no gap acceptance correction needed can still calculate ξ^{cal}

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

In W production, the difference between ξ^{cal} and ξ^{RP} is related to missing E_T and η_v

$$\xi^{RP} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_v}$$

allows to determine:

neutrino and W kinematics

reconstructed diffractive W mass

Diffractive W Production Measurement

- ξ^{cal} < ξ^{RP} requirement
 removes most events with
 multiple pbar-p interactions
- 50 < M_W < 120 GeV/c² requirement on the reconstructed W mass cleans up possible mis-reconstructed events

Fraction of diffractive W

 R_w (0.03<ξ<0.10, |t|<1)= [0.97 ±0.05(stat) ±0.10(syst)]% consistent with Run I result, extrapolated to all ξ

Fraction of diffractive Z R_z (0.03< ξ <0.10, |t|<1)= [0.85±0.20(stat) ±0.08(syst)]%

- At the Tevatron we use similar processes with larger cross sections to test and calibrate theor. predictions

Dijets,

γγ, χ_c

Exclusive Dijet Production

PRD 77, 052004 (2008)

 M_{ii} - dijet mass, M_X - mass of system X

Exclusive Dijet Production

PRD 77, 052004 (2008)

- Exclusive dijet cross section compared with MC based on two models : ExHuME, and excl. DPE DPEMC.
- Cross section disfavors exclusive DPE model.
- → Calculation by Khoze, Martin, and Ryskin shows good agreement Eur. Phys J C14, 525 (2000).

Exclusive yy Production

3 candidates observed:
2 events are good γγ candidates
1 event is good π⁰π⁰ candidate

Theoretical Prediction:

 $\begin{array}{l} \mathsf{E}_{\mathsf{T}}(\gamma) > 5 \ \mathsf{GeV} \\ |\eta(\gamma)| < 1.0 \end{array}$

V.A.Khoze et al. Eur. Phys. J C38, 475 (2005) σ (with our cuts) = (36 +72 - 24) fb = 0.8 +1.6 -0.5 events. Cannot yet claim "discovery" as b/g study *a posteriori*, 2 events correspond to $\sigma \sim 90$ fb, agreeing with Khoze et al.

Exclusive Dimuon Production

 $\mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} + \mu^+ \mu^- + \mathbf{p}$ 3 GeV/c² <M_{µµ}<4 GeV/c²

Exclusive J/ ψ and ψ (2s)

 J/ψ production

243 ±21 events

 $d\sigma/dy|_{y=0} = 3.92 \pm 0.62 \ nb$

Theoretical Predictions

- 2.8 nb [Szczurek07,],
- 2.7 nb [Klein&Nystrand04],
- 3.0 nb [Conclaves&Machado05], and
- 3.4 nb [Motkya&Watt08].

$\Psi(2s)$ production

34±7 events

 $d\sigma/dy|_{y=0} = 0.54 \pm 0.15 \text{ nb}$

 $R = \psi(2s)/J/\psi = 0.14 \pm 0.05$ In agreement with HERA: $R = 0.166 \pm 0.012$ in a similar kinematic region

Exclusive $\chi_c \rightarrow J/\psi(\rightarrow \mu^+\mu^-) + \gamma^{\bigcirc}$

The long-standing diffractive program at CDF continues to improve our understanding of the diffractive processes.

Diffractive W/Z measurement with RP:

□ W diffractive fraction confirms Run I rapidity gap result

 $R_{W} (0.03 < \xi < 0.10, |t| < 1) = [0.97 \pm 0.05(\text{stat}) \pm 0.10(\text{syst})]\%$ $R_{Z} (0.03 < \xi < 0.10, |t| < 1) = [0.85 \pm 0.20(\text{stat}) \pm 0.08(\text{syst})]\%$

Exclusive Production

observation of exclusive dijet production

 \Box search for exclusive $\gamma\gamma$ production (3 candidates)

 \Box observation of exclusive χ_c , J/ ψ , ψ (2s)

Back up

CDF II Detectors

RPS acceptance ~80% for 0.03 < ξ < 0.1 and |t| < 0.1

 $E_T^e(p_T^{\mu}) > 25 \text{ GeV}$ $f_T > 25 \text{ GeV}$ $40 < M_T^W < 120 \text{ GeV}$ $|Z_{vtx}| < 60 \text{ cm}$

 $E_T^{e_1}(p_T^{\mu_1}) > 25 \text{ GeV}$ $E_T^{e_2}(p_T^{\mu_2}) > 25 \text{ GeV}$ $66 < M^Z < 116 \text{ GeV}$ $|Z_{vtx}| < 60 \text{ cm}$

□ RPS trigger counters - require MIP
□ RPS track - 0.03< ξ <0.10, |t|<1GeV²
□ W→ ξ^{cal} < ξ^{RP}, 50 < M_W(ξ^{RPS},ξ^{cal}) < 120 GeV²
□ Z→ ξ^{cal} < 0.1

Exclusive Dimuon Production

$p + \overline{p} \rightarrow p + \mu^+ \mu^- + \overline{p}$ Trigger: $3 \text{ GeV/c}^2 < M_{\mu\mu} < 4 \text{ GeV/c}^2$ muon + track + forward rapidity gaps in BSCs2 oppositely charged muon tracks with $p_T > 1.4 \text{ GeV/c}$, $|\eta| < 0.6$ $\varepsilon_{excl} \sim 0.093 => L = 1.48 \text{ fb}^{-1}$ but $L_{eff} \sim 140 \text{ pb}^{-1}$