Measurement of Open Heavy Flavor Production in STAR Experiment at RHIC

W. Xie for STAR Collaboration (*Purdue University, West Lafayette*)

> DIS2010 Convitto della Calza, Firenze, 19th - 23rd April 2010

Motivation for Studying Heavy Quarks

- Heavy quark mass are external parameter to QCD.
- Sensitive to initial gluon density and gluon distribution.
- Interact with the medium differently from light quarks.
- Suppression or enhancement pattern of heavy quarkonium production reveal critical features of the medium.
- Cold Nuclear effect (CNM):
 - Different scaling properties in central and forward rapidity region CGC.
 - Gluon shadowing, etc

The Long Standing Issue on RHIC NPE Measurement

STAR Solution

✓ Significantly Increase the S/B of this analysis (2008-present) ✓ Cross check NPE measurements with early runs.

Yield of conversion electrons at different radial location

STAR high pT NPE Measurements in 200GeV p+p collisions

Measurement done using TPC+EMC using run08 and run05 data.

✓ pT>2.5GeV/c NPE measurement with dramatically different background agree with each very well

• Combined using "Best Linear Unbiased Estimate". $\chi^2/ndf = 4.81/7 = 0.69$

Comparison with the Published NPE Results

STAR and PHENIX NPE result in 200GeV p+p collisions ✓ Are consistent within errors at pt > 2.5 GeV/c

STAR High pT NPE results are consistent with FONLL in 200GeV p+p collisions

Disentangle Charm and Bottom Production

$$\Delta \phi_{e-h} = r_B \Delta \phi_{e-h}^B + (1 - r_B) \Delta \phi_{e-h}^D$$
$$r_B = e_B / (e_D + e_B)$$

• Wider $\Delta \phi$ distribution for B meson because of the larger mass.

•Combined fit on data to obtain the B meson contribution to nonphotonic electron.

8/18

Disentangle Charm and Bottom Production

B Quark contribution is Significant in p+p colliosions

~30-60% of non-photonic electron come from B meson decay in 200GeV p+p collisions.

Constrain B quark Cross Section

•Obtain B quark high pT spectrum

•Constrain B quark Production Cross Section at RHIC using Model predictions.

Future of Heavy Flavor Measurement at STAR

Summary and Perspective

✓ STAR NPE results and PHENIX published result are consistent within errors at pt > 2.5 GeV/c in 200GeV p+p Collisions.

✓ STAR hight pT NPE Results are consistent with FONLL.

✓ New measurements of D mesons and low pT NPE using TOF should provide good constraints on total charm cross section

✓ Expecting exciting results in the coming years with upgraded detectors and luminosity.

backup

Future of Heavy Flavor Measurement at STAR

Source: Phys. Rept. 462: 125-175, 2008

<u>RHIC II</u>	LHC
Beams: p to U	Beams: p to Pb
All combinations $\sqrt{s} = 22-200 \text{ GeV}$	$p+p \sqrt{s} = 14 \text{ TeV}$ $p+Pb \sqrt{s} = 8.8 \text{ TeV}$ $Pb+Pb \sqrt{s} = 5.5 \text{ TeV}$
Central Au+Au: T ~ 2 T _c	Central Pb+Pb: T ~ 3.5 T _c
Detectors:	Detectors:
PHENIX STAR eRHIC detector?	ALICE ATLAS CMS
12 weeks / year physics (split runs)	4 weeks / year physics
Average luminosity 7 * 10 ²⁷ cm ⁻² s ⁻¹	Average luminosity 5 * 10 ²⁶ cm ⁻² s ⁻¹
Au+Au lum/year 18,000 µb ⁻¹	Pb+Pb luminosity/year 500 ub-1
	$\sigma (J/\psi)_{LHC} = \sigma (J/\psi)_{RHIC} * 13$
$Lint_{RHIC}/Lint_{LHC} = 36$	$\sigma(Y)_{LHC} = \sigma(Y)_{RHIC}$ 55
$N_{cc} \sim 10 \ N_{bb} \sim 0.05$ (central)	$N_{cc} \sim 115 N_{bb} \sim 5$ (central)

Analysis Method in STAR for High pT NPE

Dominant background: $\pi^0 \rightarrow \gamma + e^+ + e^ \gamma \rightarrow e^+ + e^-$

$$N(npe) = N(inclusive) - \frac{N(photonic)}{\varepsilon}$$

Photonic Reconstruction Efficiency

- \checkmark estimated from embedding.
- ✓ Small variation in ε can leads to large difference in NPE

Combining run5 and run8 results

Using "Best Linear Unbiased Estimate" NIM A500(2003)391,

•χ²/ndf = 4.8/7 = 0.69
•Run05 and run08 are consistent with each other.

18

