Nuclear medium dependence of transverse Λ polarisation in quasi-real photoproduction

Klaus Rith

University of Erlangen-Nürnberg & DESY

On behalf of the hermes collaboration

Klaus Rith

DIS 2010, Florence

April 20, 20010

HERMES Experiment

27.5 GeV e^+/e^- beam of HERA

Internal gas targets

polarized : ¹H,¹H^{,2}H, ³He unpolarized: ¹H, ²H, ³He, ⁴He, ¹⁴N, ²⁰Ne, ⁸⁴Kr, ¹³¹Xe

HERMES Spectrometer

Reconstruction of Λ events

1995-2000 data (all targets except Xe)

<u>Background</u> <u>suppression</u>: Cherenkov information + vertex cuts

N_∧≈250k N_⊼≈50k

Longitudinal Λ Polarisation

Parity violating decay $\Lambda \rightarrow \pi^{-} p$: p preferentially emitted along $\Lambda spin$

Transverse Λ polarisation

- Quasi-real photoproduction: $\frac{Q^2 < 0.05 \text{ GeV}^2}{< v >= 15.6 \text{ GeV}^2}$ for 80% of events
- Unpolarised beam and target ($P_BP_T = 0.0000 \pm 0.0005$):

Spontaneous polarisation is directed along $\hat{\mathbf{n}}$

Formalism (moments) is based on up/down mirror (geometrical) symmetry of the detector

Phys.Rev.D76 (2007) 092008

Kinematical dependences of P_{Λ} 1995-2000 data (all targets except Xe) $\Lambda: P_n = 0.078 \pm 0.006_{stat.} \pm 0.012_{syst.}$ $\overline{\Lambda}: P_n = -0.025 \pm 0.015_{stat.} \pm 0.018_{syst.}$ $P_n(\Lambda)$ is positive

Same sign as for K^- (us) and Σ^- (dds) beams

Kinematical dependences of P_{Λ}

1995-2000 data (all targets except Xe)

Phys.Rev.D76 (2007) 092008

0.8

1 0 1. .2

p_T (GeV)

A dependence of P_{Λ} in pA collisions

A dependence of Λ polarisation

A/Z dependence of Λ polarisation

 $P_{\Lambda}(n) \iff P_{\Lambda}(p)$ not sufficient to explain vanishing P_{Λ} for large A

Additional nuclear medium effects required for explanation, P_{Λ} destroyed by FSI ?

- Longitudinal spin transfer $D^{\Lambda}_{LL'}$ significantly different from zero at $x_F > 0$: $D^{\Lambda}_{LL'} = 0.19 \pm 0.04$
- Transverse Λ polarisation observed in quasi-real photoproduction
- P_n(Λ) is positive. Same sign as for K⁻ (us) and Σ^- (dds) beams. Origin: s -quark content of γ ?
- P_{Λ}(¹H) >> P_{Λ}(²H) \longrightarrow P_n(Λ) for neutrons substantially smaller than for protons ?
- Nuclear medium effects: P_n(Λ) appears to vanish for large A (A/Z)

A/Z dependence of Λ polarisation

A dependence of Λ polarisation

