Parton showers with medium-modified splitting functions

GENNARO CORCELLA

Centro E. Fermi, Rome, Scuola Normale Superiore and INFN, Pisa

(a non expert on heavy ions!)

- 1. Introduction
- 2. Angular-ordered parton showers (HERWIG)
- 3. Medium-modified Altarelli-Parisi splitting functions
- 4. Phenomenology with modified HERWIG
- 5. Comments on Q-PYTHIA results
- 6. Conclusions
- N. Armesto, G. C., L. Cunqueiro and C.A. Salgado, JHEP 1109 (2009) 122;
- G. C., Q-HERWIG release, in progress.

RHIC observations: jet quenching (suppression of high- p_T particles with respect to pp collisions); disappeareance or distortion of particle spectra

Typical explanation: higher energy loss in a dense medium

Analytical calculations are suitable to describe inclusive quantities, but not to yield exclusive final states

Monte Carlo generators are integral part of any experimental analysis: hard-scattering processes, parton showers, hadronization and underlying event

Great interest in having Monte Carlo generators for heavy-ion collisions capable of describing jet quenching

A simple prescription: medium-modified Altarelli-Parisi splitting functions (BDMPS approximation) to enhance branching probability and radiative loss in a medium

Implementation of modified splitting functions in Q-PYTHIA (ordering in virtuality and string hadronization) giving results in qualitative agreement with RHIC measurements

Recent work towards Q-HERWIG: modified angular-ordered showers with cluster hadronization

Monte Carlo event generators: multiple radiation soft or collinear approximation

$$p(E) = \frac{k(\omega)}{\theta}$$

$$p_2(E_2), \quad z = \omega/E$$

$$d\mathcal{P} = \frac{\alpha_S}{2\pi} P(z) dz \frac{dQ^2}{Q^2} \Delta_S(Q_{\text{max}}^2, Q^2)$$

 Q^2 : ordering variable

 $\Delta_S(Q_{\max}^2,Q^2)$ Sudakov form factor: no radiation in $[Q^2,Q_{\max}^2]$

$$\Delta_S(Q_{\text{max}}^2, Q^2) = \exp\left[-\frac{\alpha_S}{2\pi} \int_{Q^2}^{Q_{\text{max}}^2} \frac{dQ'^2}{Q'^2} \int_{z_{\text{min}}}^{z_{\text{max}}} dz P(z)\right]$$

HERWIG: $Q^2 = E^2(1 - \cos \theta) \simeq E^2 \theta^2/2$ Soft approximation: angular ordering

PYTHIA: virtuality evolution $p^2 \simeq 2z(1-z)Q^2$

It includes angular ordering by an additional veto

PYTHIA 6.3: transverse-momentum ordering $k_T^2 \simeq 2z^2(1-z)^2Q^2$

Hard and large-angle radiation: matrix-element corrections

Evolution variable relevant on observables sensitive to colour coherence (CDF)

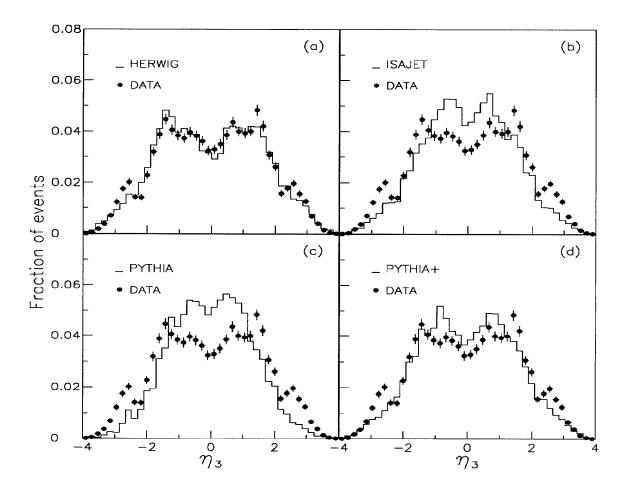
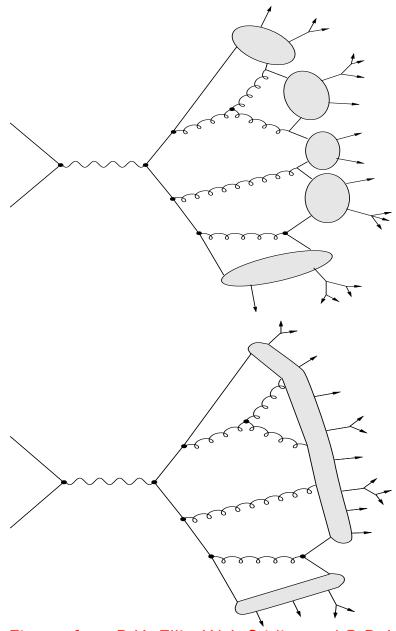



Figure 10:

Hadronization models

Cluster model (HERWIG)

Perturbative evolution ends at $Q^2 = Q_0^2$

Angular ordering ⇒ **colour preconfinement**

Forced gluon splitting $(g \rightarrow q\bar{q})$

Colour-singlet clusters decay into the observed hadrons

String model (PYTHIA)

q and \bar{q} move in opposite direction

The colour field collapses into a string, with uniform energy density

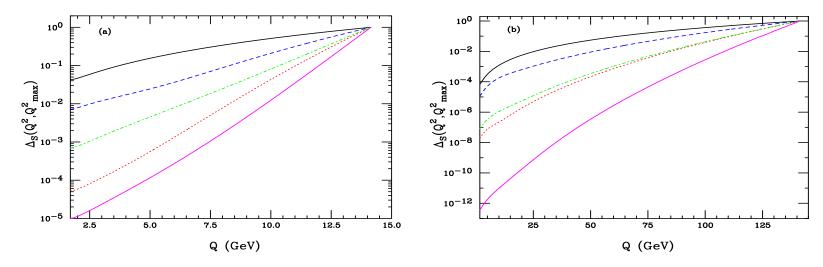
 $qar{q}$ pairs are produced

The string breaks into the observed hadrons

Figures from R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics

Medium-modified splitting functions: $P(z) \rightarrow P(z) + \Delta P(z, p^2, \hat{q}, L)$

 $\hat{q}=\langle k_T^2 \rangle/\lambda$: transport coefficient; L: medium length; p^2 : virtuality

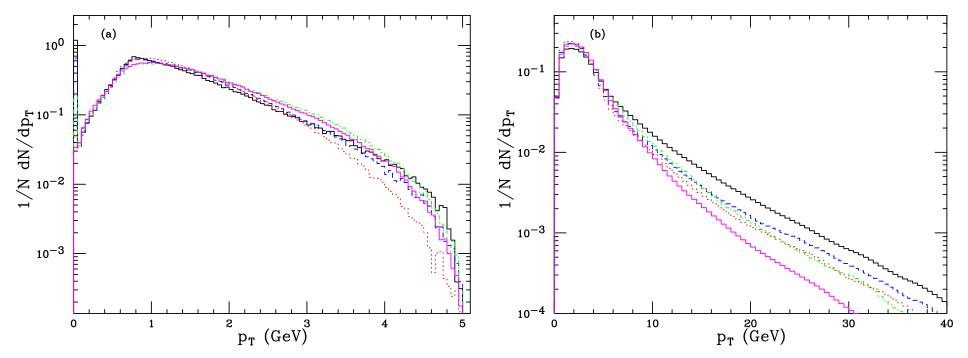

 ΔP from BDMPS i.e. collinear multiple radiation off static scattering centres with a screening potential: $V(x) = \frac{e}{4\pi} \, \frac{\exp(-\mu |\vec{x} - \vec{x}_i|)}{|\vec{x} - \vec{x}_i|}$

$$\frac{d^2I}{dzdp_T^2} = \frac{\alpha_S}{2\pi} \frac{P(z)}{p_T^2} + \frac{d^2I_{\text{med}}}{dzdp_T^2} \implies \Delta P(z, p^2, \hat{q}, L) = \frac{2\pi p_T^2}{\alpha_S} \frac{d^2I_{\text{med}}}{dp_T^2dz}$$

Effective length to account for parton formation length: $L=L_0-2zE/k_T^2$

E=10, $100~{\rm GeV}$; $\hat{q}=1,\,10~{\rm GeV}^2/{\rm fm}$; $L_0=2$, $5~{\rm fm}$; $\hat{q}L_0=2$, $5,\,20$, $50~{\rm GeV}^2$

Gluon Sudakov form factors: $E=10~{\rm GeV}$ (a) and $100~{\rm GeV}$ (b)

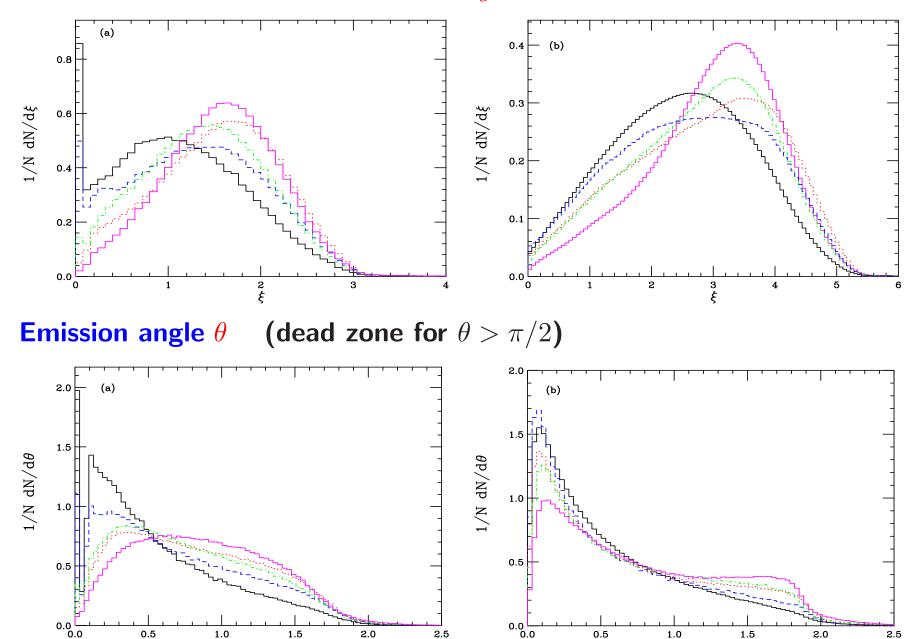


Solid: vacuum; Dashes: $\hat{q}L_0=2~\text{GeV}^2$; Dots: $\hat{q}L_0=5~\text{GeV}^2$; Dot-dashes: $\hat{q}L_0=20~\text{GeV}^2$ Solid: $\hat{q}L_0=50~\text{GeV}^2$

Showers initiated by gluons of 10 and 100 GeV - average parton multiplicities:

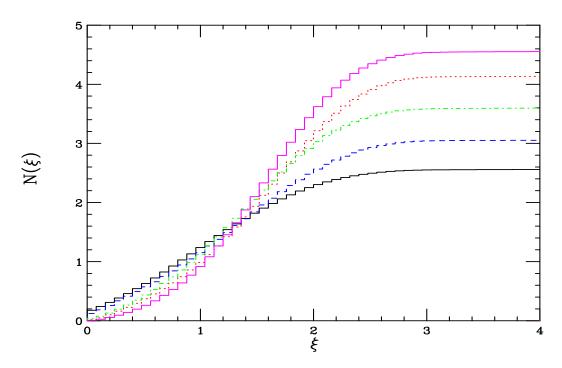
E	$\hat{q}L_0 = 0$	$\hat{q}L_0=2~{\sf GeV}^2$	$\hat{q}L_0 = 5 \text{ GeV}^2$	$\hat{q}L_0 = 20 \text{ GeV}^2$	$\hat{q}L_0 = 50 \text{ GeV}^2$
10 GeV	2.56	3.05	4.14	3.60	4.56
100 GeV	6.95	7.41	8.79	8.93	11.70

Transverse momentum distributions:



(a): E = 10 GeV; (b): E = 100 GeV

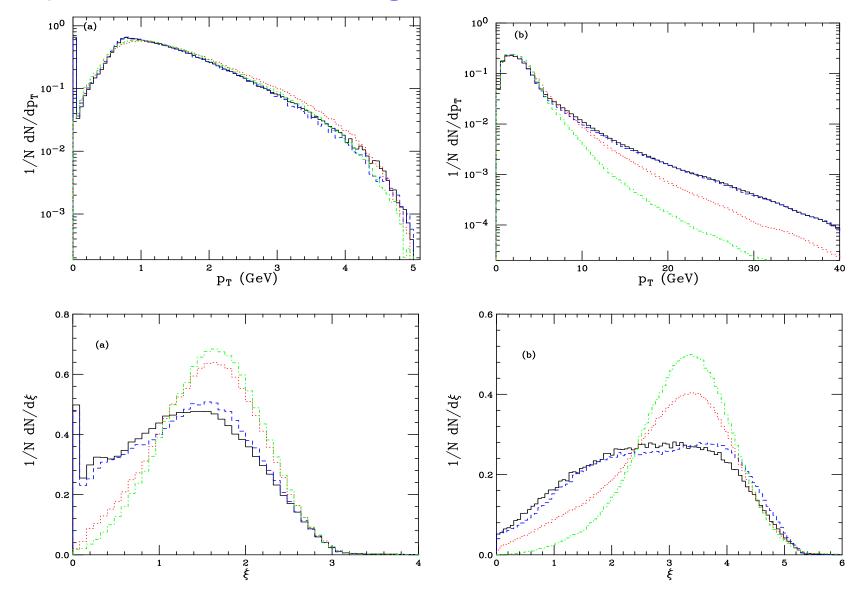
Solid: vacuum; Dashes: $\hat{q}L_0=2~\text{GeV}^2$; Dots: $\hat{q}L_0=5~\text{GeV}^2$; Dot-dashes: $\hat{q}L_0=20~\text{GeV}^2$ Solid: $\hat{q}L_0=50~\text{GeV}^2$


Peak at $p_T=0$: events with no branchings, depending on $\Delta_S(Q_0^2,Q_{\max}^2)$

Logarithmic energy fraction $\xi = \ln(E_g/|p|)$

Integrated ξ spectrum with E=10 GeV to remove the spike:

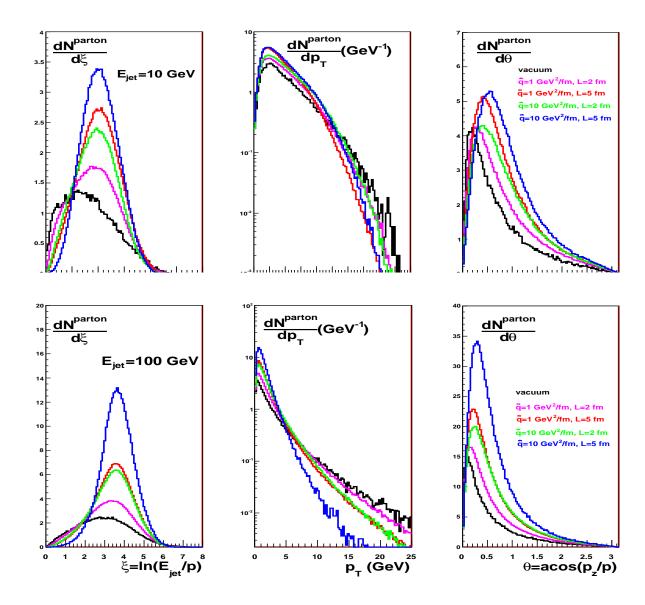
$$N(\xi) = \int_0^{\xi} d\xi' \frac{dN}{d\xi'}$$



Solid: vacuum; Dashes: $\hat{q}L_0 = 2 \text{ GeV}^2$; Dots: $\hat{q}L_0 = 5 \text{ GeV}^2$;

Dot-dashes: $\hat{q}L_0 = 20$ **GeV**²; **Solid:** $\hat{q}L_0 = 50$ **GeV**²

 $\xi = 0.5$: suppression from 10% ($\hat{q}L_0 = 2 \text{ GeV}^2$) to 60% ($\hat{q}L_0 = 50 \text{ GeV}^2$)


Spectra for fixed $L=L_0$: larger medium-induced effects

Solid: $\hat{q}L_0=2~{\rm GeV}^2$, variable L; Dashes: $\hat{q}L_0=2~{\rm GeV}^2$, fixed L; Dots: $\hat{q}L_0=50~{\rm GeV}^2$, variable L; Dot-dashes: $\hat{q}L_0=50~{\rm GeV}^2$, fixed L

Results using Q-PYTHIA (comparison in progress)

N. Armesto, L. Cunqueiro, C.A. Salgado, Eur. Phys. J. C63 (2009) 679

Larger medium effects in Q-PYTHIA – no peak at $p_T = \theta = 0$

Conclusions and outlook

Medium-modified splitting functions in the HERWIG angular-ordered parton shower algorithm

Larger energy loss (suppression in the Sudakov form factor)

Results on transverse-momentum, energy-fraction and angular distributions

Remarkable impact of medium effects

Higher parton multiplicity, suppression at large transverse momentum, wider angular distributions, small- ξ suppression

In progress:

Analysis at hadron level and comparison with Q-PYTHIA: role played by ordering variables and hadronization models

Comparison with RHIC data and predictions for LHC

Release of Q-HERWIG event generator

HERWIG++ for jet quenching?