# Multiple parton interactions in QCD

#### M. Diehl

Deutsches Elektronen-Synchroton DESY

DIS 2010, Firenze, 20 April 2010





### Multi-parton interactions

- generically take place in hadron-hadron collisions
- effects average out in sufficiently inclusive quantities but do affect final state properties



- estimated to be important for many LHC processes see e.g. Procs. of the Workshop on HERA and the LHC, 2005 and 2008
- many studies in the literature (theory + experiment) but so far no systematic derivation in QCD
- aim of this talk: discuss some steps in this direction

work in progress with A. Schäfer

Intro

#### Theoretical framework

- require all interactions to be hard
  - predictive power from factorization and pert. theory
  - collision energy at LHC is huge
- $\triangleright$  consider gauge boson pair production (pairs of  $\gamma^*$ , W, Z)



- jet production highly relevant in practice but gluon exchange with spectator partons ≫ complicated
- keep transverse gauge boson momentum differential
  - since are interested in final-state details
  - need  $k_T$  dependent parton distributions

Intro

#### Basic structure: momentum



transverse momentum balance:

$$q_1 = k_1 \pm \frac{1}{2}r_1 + \bar{k}_1 \pm \frac{1}{2}\bar{r}_1 \implies r_1 + \bar{r}_1 = 0$$

- on left and right of final-state cut
- lacktriangle Fourier transform to impact parameter:  $m{r}_1 o m{y}_1$  and  $ar{m{r}}_1 o ar{m{y}}_1$  $r_1 + \bar{r}_1 = 0$  implies  $y_1 = \bar{y}_1$

fully analogous for partons with index 2

### Basic structure: cross section

get cross section formula

$$\frac{d\sigma}{dx_1 d\bar{x}_1 d^2 \boldsymbol{q}_1 dx_2 d\bar{x}_2 d^2 \boldsymbol{q}_2} = \left[ \prod_{i=1}^2 \hat{\sigma}_i (q_i^2 = x_i \bar{x}_i s) \right] \\
\times \left[ \prod_{i=1}^2 \int d^2 \boldsymbol{k}_i d^2 \bar{\boldsymbol{k}}_i \delta(\boldsymbol{q}_i - \boldsymbol{k}_i - \bar{\boldsymbol{k}}_i) \right] \int d^2 \boldsymbol{y}_1 F(x_i, \boldsymbol{k}_i, \boldsymbol{y}_1) \bar{F}(\bar{x}_i, \bar{\boldsymbol{k}}_i, \boldsymbol{y}_1)$$

$$\hat{\sigma}_i = \text{ parton-level cross section}$$
  $F(x_i, {m k}_i, {m y}_1) = k_T$  dependent two-parton distribution

- result follows from Feynman graphs and hard-scattering approximation no semi-classical approximation involved
- ▶  $\int d^2 q_1 \int d^2 q_2$  in cross sect.  $\rightarrow$  collinear distributions

$$F(x_i, \mathbf{y}_1) = \int d^2 \mathbf{k}_1 \int d^2 \mathbf{k}_2 F(x_i, \mathbf{k}_i, \mathbf{y}_1)$$

# Operator definitions

k<sub>T</sub> dependent distribution

$$k_1 - \frac{1}{2}e_1$$
 $k_1 - \frac{1}{2}e_1$ 
 $k_1 - \frac{1}{2}e_1$ 
 $k_1 + \frac{1}{2}e_1$ 

$$F(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}_{1}) = \int \frac{dz_{2}^{-} d^{2}\boldsymbol{z}_{2}}{(2\pi)^{3}} e^{i\boldsymbol{x}_{2}z_{2}^{-}p^{+} - i\boldsymbol{z}_{2}\boldsymbol{k}_{2}} \int \frac{dz_{1}^{-} d^{2}\boldsymbol{z}_{1}}{(2\pi)^{3}} e^{i\boldsymbol{x}_{1}z_{1}^{-}p^{+} - i\boldsymbol{z}_{1}\boldsymbol{k}_{1}} \times 2p^{+} \int dy_{1}^{-} \langle p|\bar{q}\left(-\frac{1}{2}z_{2}\right)\Gamma_{2}q\left(\frac{1}{2}z_{2}\right)\bar{q}\left(y_{1} - \frac{1}{2}z_{1}\right)\Gamma_{1}q\left(y_{1} + \frac{1}{2}z_{1}\right)|p\rangle_{z_{i}^{+} = y_{1}^{+} = 0}$$

collinear distributions

$$F(x_{i}, y_{1}) = \int \frac{dz_{2}^{-}}{2\pi} e^{ix_{2}z_{2}^{-}p^{+}} \int \frac{dz_{1}^{-}}{2\pi} e^{ix_{1}z_{1}^{-}p^{+}}$$

$$\times 2p^{+} \int dy_{1}^{-} \langle p|\bar{q}(-\frac{1}{2}z_{2})\Gamma_{2} q(\frac{1}{2}z_{2}) \bar{q}(y_{1} - \frac{1}{2}z_{1})\Gamma_{1} q(y_{1} + \frac{1}{2}z_{1})|p\rangle \underset{z_{i}=y_{1}^{+}=y_{1}^{+}=0}{z_{i}=0}$$

still  $y_1 \neq 0 \implies$  finite transverse distance between two partons ⇒ not a twist-four operator but product of two twist-two operators

Dirac matrices  $\Gamma_i \to \text{spin}$  structure  $\to \text{talk Thu } 9:00$  in spin/diffraction session

## Power behavior: single versus double hard scattering

from scattering formulae readily find



double scattering not power suppressed

## Power behavior: single versus double hard scattering

from scattering formulae readily find

$$s\,\frac{d\sigma}{dx_1\,d\bar{x}_1\,d^2\boldsymbol{q}_1\,dx_2\,d\bar{x}_2\,d^2\boldsymbol{q}_2}\,\sim\,\frac{1}{Q^2\Lambda^2}\qquad \qquad Q^2\sim\boldsymbol{q}_i^2,\,\Lambda^2\sim\mathrm{GeV}^2$$
 for both and

- ⇒ double scattering not power suppressed
- ightharpoonup but if integrate over  $q_1$  and  $q_2$  then

i.e. single hard scattering has larger phase space in transv. momenta

### Color structure



$$\begin{split} F(x_i, \boldsymbol{k}_i, y_1) &= \int \frac{dz_2^- d^2 \boldsymbol{z}_2}{(2\pi)^3} \, e^{ix_2 z_2^- \, p^+ - i \boldsymbol{z}_2 \boldsymbol{k}_2} \int \frac{dz_1^- d^2 \boldsymbol{z}_1}{(2\pi)^3} \, e^{ix_1 z_1^- \, p^+ - i \boldsymbol{z}_1 \boldsymbol{k}_1} \\ &\times 2 p^+ \!\! \int dy_1^- \, \langle p | \bar{q} \big( -\frac{1}{2} z_2 \big) \Gamma_2 \, q \big( \frac{1}{2} z_2 \big) \, \bar{q} \big( y_1 - \frac{1}{2} z_1 \big) \Gamma_1 \, q \big( y_1 + \frac{1}{2} z_1 \big) | p \rangle \end{split}$$

• operators  $\bar{q}_2 q_2$  and  $\bar{q}_1 q_1$  can couple to color singlet or octet:

$$F_{1} \to (\overline{q}_{2} \mathbb{1} q_{2}) (\overline{q}_{1} \mathbb{1} q_{1})$$

$$F_{8} \to (\overline{q}_{2} t^{a} q_{2}) (\overline{q}_{1} t^{a} q_{1}) = \frac{1}{2} (\overline{q}_{2} \mathbb{1} q_{1}) (\overline{q}_{1} \mathbb{1} q_{2}) - \frac{1}{2N_{c}} (\overline{q}_{2} \mathbb{1} q_{2}) (\overline{q}_{1} \mathbb{1} q_{1})$$

relative weight in gauge boson pair production:

$$\frac{1}{N_c^2} F_1 \bar{F}_1 + \frac{4}{N_c^2 - 1} F_8 \bar{F}_8$$

 color octet distributions essentially unknown (no probability interpretation as a guide)

Summary

# High $q_T$ : more predictive power

lacktriangle consider region  $\Lambda \ll q_T \ll Q$  with  $q_T \sim |{m q}_i|$ 

have  $|m{k}_i| \sim q_T$ 

- $ightharpoonup k_T$  dependent distr'n = hard scattering  $\otimes$  collinear distr'n hard scattering closely related to DGLAP splitting functions
- ▶ case 1:  $|r_1| \sim \Lambda$ , i.e.  $|y| \sim 1/\Lambda$  of hadronic size  $\rightarrow$  independent hard scatters for pair 1 and 2



- $\blacktriangleright$  color factors:  $C_F^2$  for singlet  $F_1$   $\left(\frac{1}{2N_c}\right)^2 \text{ for octet } F_8$
- singlet also favored in gluon sector

power behavior:  $F(x_i, \pmb{k}_i, \pmb{y}_1) \sim \frac{\Lambda^2}{q_T^4}$  and  $s \, \frac{d\sigma}{d^2 \pmb{q}_1 \, d^2 \pmb{q}_2} \sim \frac{\Lambda^2}{Q^2 q_T^4}$ 

Summary

## High $q_T$ : more predictive power

▶ consider region  $\Lambda \ll q_T \ll Q$  with  $q_T \sim |\mathbf{q}_i|$ 

have  $|m{k}_i| \sim q_T$ 

- ▶  $k_T$  dependent distr'n = hard scattering  $\otimes$  collinear distr'n hard scattering closely related to DGLAP splitting functions
- lacktriangle case 1:  $|m{r}_1|\sim \Lambda$ , i.e.  $|m{y}|\sim 1/\Lambda$  of hadronic size

$$F(x_i, \boldsymbol{k}_i, \boldsymbol{y}_1) \sim \frac{\Lambda^2}{q_T^4}$$
 and  $s \, \frac{d\sigma}{d^2 \boldsymbol{q}_1 \, d^2 \boldsymbol{q}_2} \sim \frac{\Lambda^2}{Q^2 q_T^4}$ 



lacktriangledown case 2:  $|m{r}_1|\sim |m{q}_i|$ , i.e.  $|m{y}|\ll 1/\Lambda$  small





$$F(x_i,m{k}_i,m{y}_1)\sim rac{1}{q_T^2}$$
 and  $s\,rac{d\sigma}{d^2m{q}_1\,d^2m{q}_2}\sim rac{1}{Q^2q_T^2}$ 

ightharpoonup case 1 is power suppressed by  $\frac{\Lambda^2}{q_T^2}$ , but has small-x enhancement

#### Evolution of collinear distributions

consider only color singlet combination  $F_1$ , situation for  $F_8$  more complicated

$$\begin{split} F(x_i,y_1) &= \int \frac{dz_2^-}{2\pi} \, e^{ix_2 z_2^- \, p^+} \int \frac{dz_1^-}{2\pi} \, e^{ix_1 z_1^- \, p^+} \\ &\times 2p^+ \!\! \int dy_1^- \, \left\langle p | \bar{q} \left( -\frac{1}{2} z_2 \right) \! \Gamma_2 \, q \left( \frac{1}{2} z_2 \right) \bar{q} \left( y_1 - \frac{1}{2} z_1 \right) \! \Gamma_1 \, q \left( y_1 + \frac{1}{2} z_1 \right) \! \left| p \right\rangle_{z_i^+ = y_1^+ = 0, \, z_i = 0} \end{split}$$

 $F(x_i, y_1)$  for  $y_1 \neq 0$ : separate DGLAP evolution for pair 1 and 2  $\frac{d}{d\log u}F(x_i,\boldsymbol{y}_1) = P \otimes_{x_1} F + P \otimes_{x_2} F$ 



 $ightharpoonup \int d^2 \mathbf{y}_1 F(x_i, \mathbf{y}_1)$ : extra term from  $2 \rightarrow 4$  parton transition recent study by Gaunt and Stirling



consistency problem for frequently made ansatz

$$F(x_i, \boldsymbol{y}_1; \mu) = G(\boldsymbol{y}_1) \left[ \int d^2 \boldsymbol{y}_1 F(x_i, \boldsymbol{y}_1) \right]_{\mu}$$

if on r.h.s. include  $2 \rightarrow 4$  term in evolution

#### Sudakov factors

- $\triangleright$  cross section differential in  $q_i$  contains Sudakov logarithms
- can adapt Collins-Soper-Sterman formalism (originally developed for single Drell-Yan and similar proc's)
  - $\rightsquigarrow$  include and resum Sudakov logs in  $k_T$  dependent parton distr's

### results of analysis (simplified):

- for  $q_T \sim \Lambda$ 
  - Sudakov factors mix singlet and octet distr's  $F_1$  and  $F_8$
  - generically Sudakov factors of same size for singlet and octet
- for  $q_T \gg \Lambda$  and  $y_1 \sim 1/\Lambda$ 
  - singlet F<sub>1</sub> decouples from octet F<sub>8</sub>
  - octet distr'n has extra suppression by a power of  $\frac{\Lambda}{ax}$

## Summary

- multiple hard interactions not power suppressed for cross section differential in  $|q_i| \ll Q$
- nontrivial color structure contributions without probability interpretation
- **>** some simplification for transv. mom.  $|q_i| \gg \Lambda$ 
  - collinear distributions as input
  - enhancement of color singlet combinations further studies needed
- need multi-parton distr's depending on transverse distance y between partons
- ▶ for finite y (not  $\int d^2y$ ) multi-parton distr's evolve with simple sum of ordinary DGLAP kernels