Studies of electroweak boson production in the forward region with LHCb.

James Keaveney, UCD (on behalf of the LHCb collaboration)

Deep Inelastic Scattering (DIS) 2010, Firenze

Wednesday 21 April 2010

This talk

* LHCb

* Electroweak boson measurements at LHCb : W, Z, γ*
 => motivations and expected impact.

* Selections and expected yields.

LHCb : a <u>forward</u> spectrometer

Sophisticated trigger system includes ability to trigger / reconstruct <u>low momentum</u> muons.

Pseudorapidity range : 1.9 < η < 4.9 , p_{μ} > 6 GeV, pt_{μ} > 1 GeV

LHCb in 2010/2011

- * Data taking at $\sqrt{s} = 7$ TeV has begun.
- * Integrated luminosity so far in 2010 $\sim 176 \mu b^{-1}$
- * Resonances already observed, e.g. J/ $\Psi \rightarrow \mu^+ \mu$
- * See talk by E.Polycarpo (Thurs.)

Electroweak bosons at LHCb

Channels of interest :

$W - > \mu \overline{\nu_{\mu}} \qquad \qquad Z/\gamma^* - > \mu^+ \mu^-$

- Cross section measurements provide accurate test of standard model in new energy regime.
- Cross section and rapidity distributions can constrain PDFs (see talk from F. de Lorenzi).

LHCb : Kinematic coverage

- * Complementary rapidity range to ATLAS/CMS, LHCb can provide crosscheck.
- * LHCb has unique access to forward region (y > 2.5).
- * We expect ~10⁶ Z and W events at LHCb in 2010/2011.

LHCb : Kinematic coverage

- Angular acceptance and triggering capabilities of LHCb provides unique coverage of <u>two</u> distinct regions in (x, Q²) space.
- One region (low x) previously unexplored.

 $W - > \mu \nu_{\mu}$

Signal event characteristics -->Single isolated high Pt Muon ->Little other energy in event

Largest backgrounds : Mis-ID of π/K $Z/\gamma^* \rightarrow \mu^+ \mu^ B \rightarrow \mu + X$

Mis-ID component extrapolated to high Pt region using exponential fit, agrees well with theoretical expectation.

Mis-ID in this Pt region mainly due to Pion punchthrough.

 $W - > \mu \nu_{\mu}$

$$A_{pt} = \frac{pt_{\mu} - pt_{rest}}{pt_{\mu} + pt_{rest}}$$

 $W - > \mu \nu_{\mu}$

$$A_{pt} = \frac{pt_{\mu} - pt_{rest}}{pt_{\mu} + pt_{rest}}$$

10

 $W - > \mu \nu_{\mu}$

To further suppress Mis-ID background we use a cone based selection. Cut on asymmetry between Pt_{μ} and summed Pt in cone around μ .

Require $C_{Pt} > C_{Pt}$.7
---------------------------	----

 $W - > \mu \nu_{\mu}$

before isolation cuts

after isolation cuts

 $W - > \mu \nu_{\mu}$

before isolation cuts

after isolation cuts require Pt > 30GeV

W sample purity ~92%

 $Z - > \mu^+ \mu^-$

Thorough analysis in Monte Carlo presented previously*

I will present recent refinements.

Signal selected with simple kinematic cuts: Muon Pt > 20GeV; 40GeV < M_{μμ} <130GeV ; Ehadronic Tracks < 50GeV

Largest remaining background arises from hadron Mis-ID.

 $Z - > \mu^+ \mu^-$

Similar approach to W selection forseen to further suppress Mis-ID background

-> can require <u>two</u> isolated muons, background suppression easier.

->Cut on the squared distance of each event from (1,1) in ($C_{Pt\mu}$ -, $C_{Pt\mu}$ +) space.

4-vector level

Requiring (I<2) rejects 99.9% of background while retaining 95% signal.

For both Z/γ^* and W, isolation distributions will be measured/calibrated with real data.

Monte Carlo cuts only an estimation.

Drell-Yan dimuons with $M_{\mu\mu} < 40 \text{GeV}$ classified as $\gamma^* - > \mu^+ \mu^-$

Similar backgrounds as for Z region

Backgrounds more dominant here!

More complex selection scheme required.

 $\gamma^* - > \mu^+ \mu^-$

Can achieve a factor of 10 reduction on Mis-ID, with ID efficiency 90%->70%

 $\gamma^* - > \mu^+ \mu^-$

A cone based selection is now applied to further suppress Mis-ID.

 $\gamma^* - > \mu^+ \mu^-$

Wednesday 21 April 2010

Estimated yields

In 2010/2011, LHCb will collect ~1fb⁻¹ of data

channel	# events in LHCb	Total Efficiency	# events recorded	Purity
W - > $\mu \nu_{\mu}$	3.47* 106	0.81	2.81* 106	0.94
$Z - > \mu^+ \mu^-$	8.52* 10 ⁵	0.79	6.73* 10 ⁵	0.99
$\begin{array}{ll} \gamma^{*-} > \mu^{+} \ \mu^{-} & 6.26^{*}10^{5} \\ & (2.5 {\rm GeV} < {\rm M} < 5 {\rm GeV}) \\ & \gamma^{*-} > \mu^{+} \ \mu^{-} & 7.76^{*}10^{5} \\ & (5 {\rm GeV} < {\rm M} < 10 {\rm GeV}) \end{array}$	6.26*10 ⁵	0.19	1.19*10 ⁵	0.95
	7.76*10 ⁵	0.37	2.87 *10 ⁵	0.95
$\gamma^{*-} > \mu^{+} \mu^{-}$ (10GeV <m<20gev) <math="">3.76^{*}10^{5}</m<20gev)>		0.39	1.47*10 ⁵	0.95
$\gamma^* - > \mu^+ \mu^-$ (20GeV <m<40gev)< td=""><td>1.08*105</td><td>0.39</td><td>4.23*104</td><td>0.95</td></m<40gev)<>	1.08*105	0.39	4.23*104	0.95

% Measurement uncertainties

*see talk by D.Moran tomorrow

channel	statistical	background	reconstruction/ selection	trigger	Luminosity*
W+/-	0.05	0.3	0.2	0.1	5-10
Z	0.07	0.2	0.3	0.1	5-10
γ* (2.5GeV <m<5gev)< td=""><td>0.2</td><td>0.2</td><td>0.3</td><td>0.1</td><td>5-10</td></m<5gev)<>	0.2	0.2	0.3	0.1	5-10
γ* (5GeV <m<10gev)< td=""><td>0.6</td><td>0.2</td><td>0.3</td><td>0.1</td><td>5-10</td></m<10gev)<>	0.6	0.2	0.3	0.1	5-10
γ* (10GeV <m<20gev)< td=""><td>0.5</td><td>0.2</td><td>0.3</td><td>0.1</td><td>5-10</td></m<20gev)<>	0.5	0.2	0.3	0.1	5-10
γ* (20GeV <m<40gev)< td=""><td>1</td><td>0.2</td><td>0.3</td><td>0.1</td><td>5-10</td></m<40gev)<>	1	0.2	0.3	0.1	5-10

Conclusions

- * LHCb expects 1fb⁻¹ in 2010.
- We have developed a set of methods to extract pure samples of Z, W and γ^{*} events in Monte Carlo.
- Data-driven methods desirable in from now on.
- * PDF work, further electroweak measurements in progress.

BACKUPS

Fitting Mis-ID Pt distribution

Wednesday 21 April 2010

Background suppression

After 1st asymmetry cut