Marco Zaro

Center for Particle Physics and Phenomenology (CP3) Université Catholique de Louvain

April 20, 2010

Marco Zaro Higgs production via vector-boson fusion at NNLO in QCD

(1日) (日) (日)

Higgs production via vector-boson fusion at NNLO in QCD	
L _{Outline}	
Outline	
Introduction: the quest for the Higgs boson	
introduction. the quest for the ringgs boson	

The Vector Boson Fusion (VBF) production channel

 QCD corrections to VBF and the structure function approach

Results at colliders

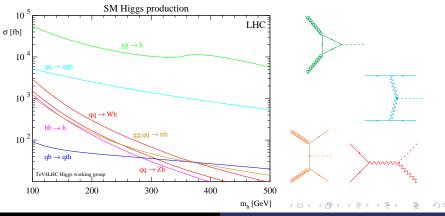
Web interface

Conclusions

Introduction: the quest for the Higgs boson

The quest for the Higgs: why NNLO?

To find the Higgs in the QCD haystack you need:

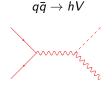

- ► The existence of the Higgs
- Rough estimate of number of expected events
- To reduce the background noise (specific signature, exp. cuts, ...)

To measure the Higgs properties (mass, couplings, ...) you need

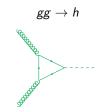
• Precise estimate of the cross-section: $LO \rightarrow NLO$: reliable info on cross-section value $NLO \rightarrow NNLO$: improvement of theoretical uncertainities

Introduction: the quest for the Higgs boson

The Higgs production channels



Marco Zaro


Higgs production via vector-boson fusion at NNLO in QCD

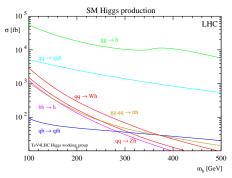
Introduction: the quest for the Higgs boson

The Higgs production channels @NNLO, on feb 2010

O. Brein, A. Djouadi and R. Harlander, Phys. Lett. B **579**, 149 (2004) [arXiv:hep-ph/0307206].

C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. Lett. **93**, 262002 (2004) [arXiv:hep-ph/0409088]. R. V. Harlander, H. Mantler, S. Marzani and K. J. Ozeren, arXiv: 0912.2104 [hep-ph]

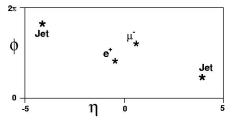
イロト イポト イヨト イヨト


▶ No 2 \rightarrow 2 process with in/out hadrons is available at NNLO

▶ VBF is an 2 \rightarrow 3 process (need for some trick to compute it at NNLO)

The Vector Boson Fusion (VBF) production channel

The VBF production channel


VBF: t-channel color singlet exchange

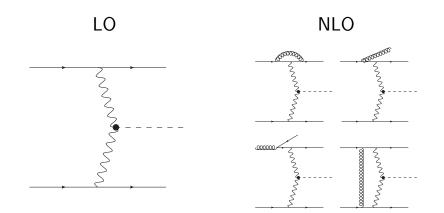
- VBF is the second channel for Higgs production
- Soft Higgs mass dependence
- ▶ Negligible interference (O(10⁻³)) with the other channels
- Clear experimental signature

The Vector Boson Fusion (VBF) production channel

VBF signature

- 2 hard tagging jets
- large rapidity separation between jets
- no (or small) hadronic activity between jets
- Higgs decay in the central rapidity region

< ∃ >

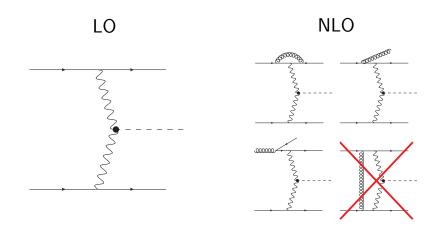

QCD corrections to VBF and the structure function approach

QCD corrections to VBF and the structure function approach

向下 イヨト イヨト

 \square_{QCD} corrections to VBF and the structure function approach

QCD corrections to VBF



・ 同 ト ・ ヨ ト ・ ヨ ト

E

 \square_{QCD} corrections to VBF and the structure function approach

QCD corrections to VBF

- 4 回 2 - 4 □ 2 - 4 □

QCD corrections to VBF and the structure function approach

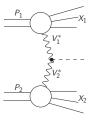
QCD corrections to VBF

At NLO

$VBF = (DIS)^2$

Knowledge of NLO DIS structure functions F_i (i = 1, 2, 3)

₩

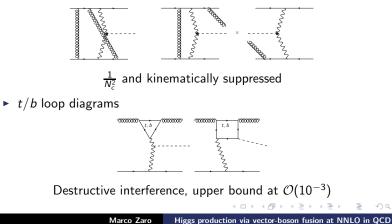

Knowledge of VBF NLO cross-section

Structure function approach T. Han, G. Valencia and S. Willenbrock, Phys. Rev. Lett. **69**, 3274 (1992) [arXiv:hep-ph/9206246]

・ 同 ト ・ ヨ ト ・ ヨ ト

QCD corrections to VBF and the structure function approach

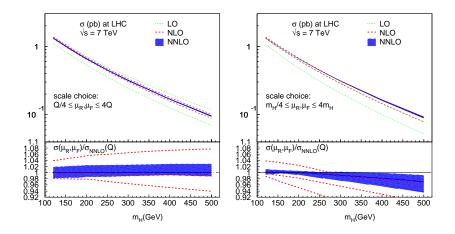
QCD corrections to VBF



$$\begin{split} d\sigma &= \frac{1}{5} \frac{G_F^2 M_{V_1}^2 M_{V_2}^2}{(Q_1^2 + M_{V_1}^2)^2 (Q_2^2 + M_{V_2}^2)^2} W_{\mu\nu}^{DIS} \left(x_1, Q_1^2\right) \mathcal{M}_{VVH}^{\mu\rho} \mathcal{M}_{VVH}^{*\nu\sigma} W_{\rho\sigma}^{DIS} \left(x_2, Q_2^2\right) \times \\ &\times \frac{d^3 P_{X_1}}{(2\pi)^3 2 E_{X_1}} \frac{d^3 P_{X_2}}{(2\pi)^3 2 E_{X_2}} ds_1 ds_2 \frac{d^3 P_H}{(2\pi)^3 2 E_H} \left(2\pi\right)^4 \delta^4 \left(P_1 + P_2 - P_{X_1} - P_{X_2} - P_H\right) \end{split}$$

LQCD corrections to VBF and the structure function approach

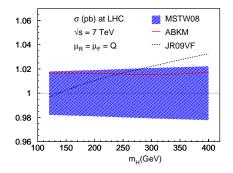
The structure function approach to VBF @ NNLO


- structure function approach is not exact at NNLO
 - double gluon-exchange diagrams (real and virtual)

Results at colliders

<ロト <回ト < 回ト < 回ト

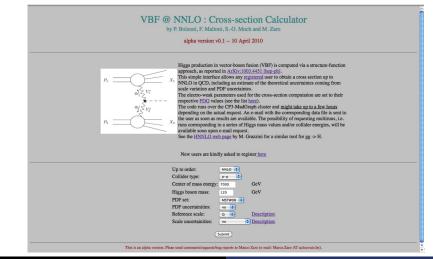
Results at the LHC @7 TeV


◆□ > ◆□ > ◆臣 > ◆臣 > ○

- ► Clear convergence of perturbative series (△NNLO/NLO = 𝒪(1%))
- Theoretical uncertainities reduce at 1 2% for the NNLO cross-section
- Reference scales Q and m_H become equivalent at NNLO
- Reference scale Q looks more natural

・ 同 ト ・ ヨ ト ・ ヨ ト …

PDF uncertainities at the LHC @7 TeV


- ▶ PDF error band of MSTW08 set is uniformly $\pm 2\%$ (68% CL)
- ABKM, JR best fit PDF is compatible with MSTW08

<ロト <回ト < 回ト < 回ト

3

Web interface

Web interface: http://madgraph.phys.ucl.ac.be/vbf.html

Higgs production via vector-boson fusion at NNLO in QCD

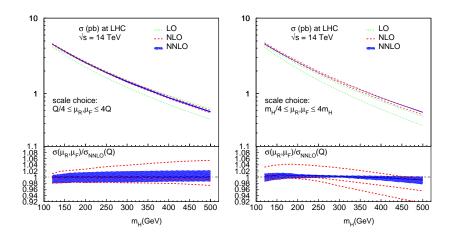
Conclusions

- LHC is finally ready to look for the Higgs
- VBF is a promising channel both for discovery and precision measurements
- First computation VBF cross-section @NNLO now available
- Theoretical uncertainities lowered at 1 2% level
- Web interface available http://madgraph.phys.ucl.ac.be/vbf.html (still alpha version)

(4) 同 (4) 日本 (4) 日本 (4)

Conclusions

- Structure function approach is a powerful tool to compute NNLO cross-sections
- ► Structure function approach can be extended to pp → X jj process
- Need for a fully differential NNLO computation

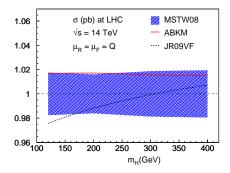

・ 回 ト ・ ヨ ト ・ ヨ ト

Backup slides

Marco Zaro Higgs production via vector-boson fusion at NNLO in QCD

- * 同 * * ミ * * ミ *

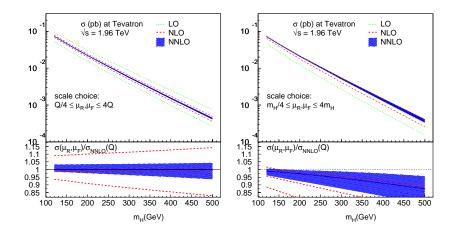
Results at the LHC @14 TeV



・ロト ・回ト ・ヨト

< ∃⇒

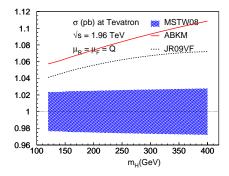
E


PDF uncertainities at the LHC @14 TeV

A ■

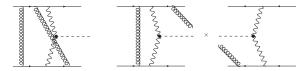
< ∃⇒

Results at the Tevatron @1.96 TeV

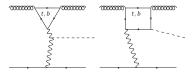


・ロト ・回ト ・ヨト

- < ∃ →

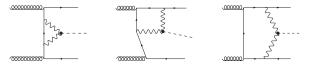

E

PDF uncertainities at the Tevatron @1.96 TeV


<ロト <回ト < 回ト < 回ト

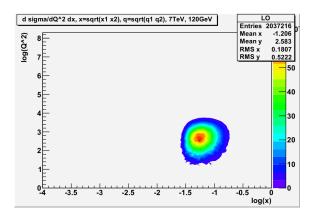
Double gluon-exchange diagrams

- Gauge invariant class
- No collinear divergencies
- R + V is UV and IR finite
- Double quark trace: 1/N_c² suppression with respect to DIS² diagrams
- Kinematic suppression
 T. Figy, V. Hankele and D. Zeppenfeld, JHEP 0802, 076 (2008) [arXiv:0710.5621 [hep-ph]].


t/b loop diagrams

- Gauge invariant class
- Box and triangle interfere destructively
- ▶ Impact on cross-section estimated in the $m_t \to \infty$, $m_b \to 0$ limit, << 1%

向下 イヨト イヨト


Single quark line (SQL) diagrams

- Gauge invariant class
- Not "pure" VBF process (colour exchanged between protons)
- Not IR-safe
- Studied by R. V. Harlander, J. Vollinga and M. M. Weber, Phys. Rev. D 77, 053010 (2008) [arXiv:0801.3355 [hep-ph]]
- Impact on the VBF cross section (after VBF cuts) $O(10^{-3})$

・ 同 ト ・ ヨ ト ・ ヨ ト

Kinematics in the x vs. Q^2 plane

$$< Q^2 > \simeq (20 \text{GeV})^2$$

 $< x > \simeq 6 \cdot 10^{-2}$

E

1

A ■

Web interface: how-to

- Register
- Choose run parameters

Up to order:	NNLO 🛟	
Collider type:	р-р 🔹	
Center of mass energy:	7000	GeV
Higgs boson mass:	120	GeV
PDF set:	MSTW08	
PDF uncertainities:	no 🔹	
Reference scale:	Q 🛟	Description
Scale uncertainities:	no	Description

The page checks wether the process has already been computed, if not it runs the code

向下 イヨト イヨト

Web interface: how-to

VBF @ p-p collider

Request sent on 2010-04-15

Process requested: mh=120 GeV, \sqrt{s} =7 TeV, up to NNLO

PDF set: MSTW08, PDF error: no

Scale reference: Q Theoretical uncertainity: no

	LO	NLO	NNLO
σ(pb):	1.239	1.3216	1.3203
theo err +:	0	0	0
theo err -:	0	0	0
pdf err +/-:	0	0	0

You can find here the list of EW parameters used for the computation

Click here to go back to the VBF @ NNLO page

<ロト <回ト < 回ト < 回ト

- The link to the results will be sent to your e-mail address
- Incremental DB
- Each user has his own results folder