First Measurement of W Bosons and their Spin Asymmetry A_L in 500 GeV polarized p+p collisions at PHENIX

Ken Barish (UCR) for

W Bosons in Polarized Proton Collisions

Proton helicity ="+"

$$|y_W - y_l| \approx \ln \left[\frac{M_W}{2E_T} + \sqrt{\left(\frac{M_W}{2E_T}\right)^2 - 1} \right] \qquad \langle x_{1,2} \rangle \approx \frac{M_W}{\sqrt{S}} e^{\pm \frac{y_l}{2}}$$

Ideal probe for polarized PDFs

- Couples to only one helicity: Maximal parity violation^x
- •Can get large asymmetries, almost can read off polarized pdfs from asymmetry A_L
- •W mass produces hard scale "easily" calculable
 - •Theory Uncertainties Fairly Small O(1%): Resummed or straight NLO?
 - •PDF uncertainties O(10%)
- •No uncertainties from fragmentation in W's leptonic decay channel
 - •SIDIS extractions of identified polarized pdf's require models of the quark fragmentation
- Also possible to probe ubar/dbar ratio

RHIC-PHENIX 2009 run

- Run 09: First 500 GeV Run, March 17-April 13, 2009
- Machine development in parallel with physics running to increase luminosity, polarization
- Integrated luminosity (with vertex cut) is ∫Ldt=8.57/pb
- Polarization is <P>=0.39±0.04 (scale uncertainty)

PHENIX Central arm: W→e[±]

Central Arm Acceptance : $|\eta|$ <0.35 in rapidity 2 arms covering $\Delta \phi = \pi$

 EMC 4x4 Tower Sum Trigger

- ±30 cm vertex cut
- High energy EM
 Calorimeter clusters
 matched to charged track
- Loose timing cut to reduce cosmic ray bkg
- Loose E/p cut

•Smooth spectrum of EMC clusters after removing bad towers

- •Smooth spectrum of EMC clusters after removing bad towers
- •Have a good track pointing to an EMC cluster

- •Smooth spectrum of EMC clusters after removing bad towers
- •Have a good track pointing to an EMC cluster
- Timing within start time of collision
 - •Reduces out of time backgrounds (cosmics) by ~80%

- •Smooth spectrum of EMC clusters after removing bad towers
- •Have a good track pointing to an EMC cluster
- •Timing within start time of collision
 - •Reduces out of time backgrounds (cosmics) by ~80%
- •E/P cut

Expected W->e decay signal

- QCD provides the most obvious background (W. Vogelsang)
- •Not shown here but very important
 - •Cosmics and photons (from meson decays and direct), which can have accidental matches to tracks or conversions
- •c/b relatively small above 30 GeV, calculated at FONLL (Matteo Carciari)
- • Z/γ^* background is estimated from PYTHIA (~1 count is expected in Run09).
- •W $\rightarrow \tau \rightarrow e$ is also small

Comparison To Measured spectra

Data and MC driven BG estimation:

EMCal cluster distribution after subtracting cosmic background

- × (Conversion + Accidental)
- × Tracking Acceptance

(NLO Hadrons thru Geant + FONLL c/b) × Normalization from fit to 10-20 GeV

- •The same scale factor for PYTHIA was used for W/Z shape.
- •W⁻→e⁻ signal has fewer counts than W⁺→e⁺ signal as expected

Isolation cut

- Signature of a W event is that it is isolated
- •Sum up energy in a cone around electron and in cone on opposite hemisphere

- •90+% of signal is kept (red histograms)
- Factor ~5 reduction in jet dominated region

Parity Violating Single Spin Asymmetry

- Spin Asymmetry is calculated from isolated leptons
 - Reduced background
 - Doesn't introduce a bias
- The data are sorted by their spin states (++,+-,-+,--) calculate the asymmetry

$$A_L^W = \frac{1}{P} \times \frac{N^+(W) - N^-(W)}{N^+(W) + N^-(W)} \qquad \begin{array}{l} \text{N}^+ \text{: helicity +} \\ \text{N}^- \text{: helicity -} \\ \text{normalized by } \text{\int} \text{L} \end{array}$$
 Raw asymmetry

- Polarization is averaged by luminosity over run
- Get a factor of two from using both beams.

Raw Asymmetries (e⁺)

PHENIX $A_L(W^+ \rightarrow e^+)$ $A_L W^+ \rightarrow e^+ (|y_e| < 0.35)$ Preliminary GRSV val -0.2-0.430-50GeV/c range <P>=0.39±0.04 -0.6 dilution 1.11±0.04 -0.8 **PH****ENIX p_{_} [GeV/c]

Using average polarization 0.39±0.04, we get

$$A_L^{W^+} = -0.83 \pm 0.31$$

Asymmetry is corrected for dilution by Z and QCD backgrounds

PHENIX Muon Arm Upgrade

Rapidity: $1.2 < \eta < 2.2$ (2.4)

Muon Trigger Upgrade

- MuTr FEE Upgrade (MuTRG)
- RPC's (Resistive Plate Chamber)
- Install additional Absorber

- •Big increase in acceptance makes PHENIX a significantly better W experiment
- •Upgraded Muon Arms will be ready to measure W→μ in the coming run

*see talk by A. Vossen

DIS2010 - Florence

Conclusions

- PHENIX observed W→ e decay in the mid-rapidity region
- First attempt to measure single spin asymmetry has detected a parity violating asymmetry leading to a preliminary value of A_L
- $A_L(W+\rightarrow e+)$ at $|y_e|<0.35$ has been measured to be

$$A_L(W^+ \rightarrow e^+) = -0.83 \pm 0.31$$

Within errors, it is consistent with the predictions.

- While the data sample is small, we got a first significant result
 - Gained experience on the backgrounds to the W in the PHENIX central arm
 - · Learned how to handle multiple collisions from high luminosity
 - Learned how to handle very high momentum particles
 - Working on finalizing cross-sections, A_L(W⁺), and A_L(W⁻)
- Goal of the RHIC W program is 300 pb⁻¹ and 70% polarization
 - Order of magnitude improvement in the error bars
 - Forward muon measurements in PHENIX will contribute significantly starting next year