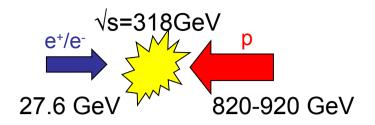
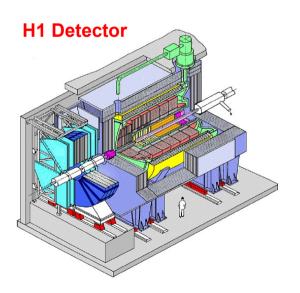

Search for Leptoquarks and Contact Interactions at HERA

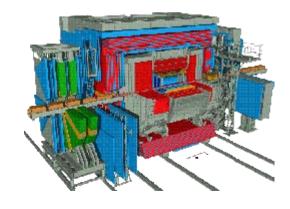
Ilias Panagoulias NTU Athens/DESY

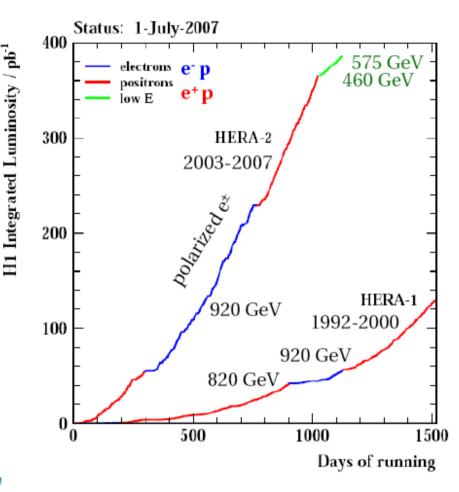


18th International Workshop On Deep Inelastic Scattering And Related Subjects (DIS 10)

19-23 Apr 2010 Florence, Italy

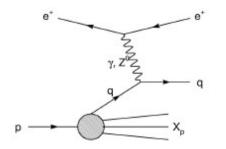

HERA Operation

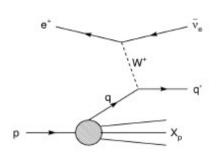

HERA


An unique e[±]p collider (1992-2007)

Two large colliding general purpose detectors H1 and ZEUS with asymmetric design

Zeus Detector



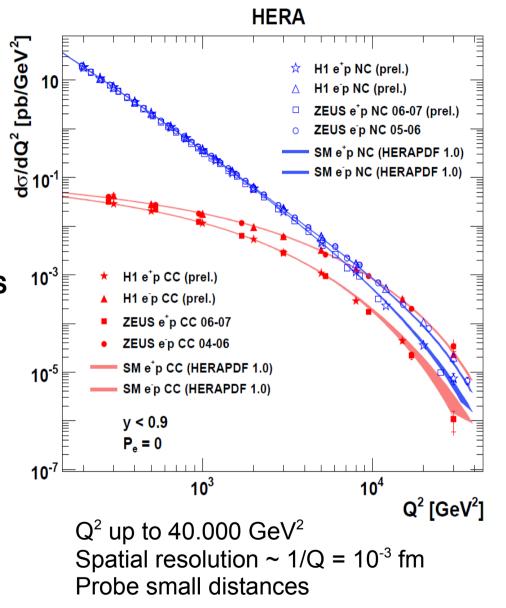

HERA I (1994-2000), L=~120pb⁻¹

HERA II (2002-2007), L=~360pb⁻¹ Longitudinal polarisation of lepton beam (P=30-40%)

High Q² NC and CC processes

Main processes studied at HERA

Neutral Current DIS

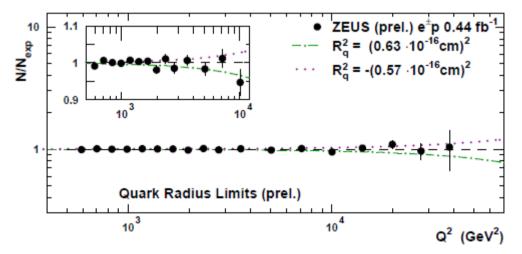

 $ep \to eX$

Charged Current DIS ep → vX

Excellent agreement between data and SM Precise tests of QCD and EW Physics

Possible deviation at high Q² should indicate Beyond SM physics

- -Leptoquark production
- -Contact Interactions


Search for quark substructure

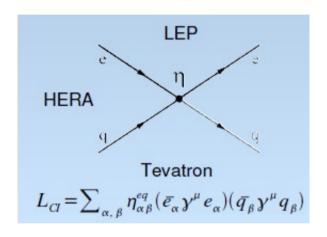
Form factor analysis to search for quark substructure.

If a quark has a finite size, the SM prediction for the cross sections are modified to

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left[1 - \frac{R_q^2}{6} Q^2 \right]^2$$

ZEUS

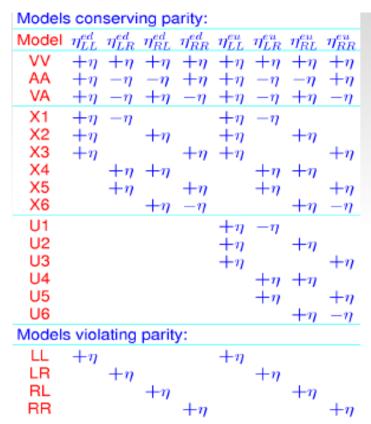
Effect of quark radius limit in SM cross section


- •Electron assumed to be point -like
- •R_q is a root mean square radius of the EW charge of the quark
- •Cross section expected to decease as higher Q²
- •Same dependence for e⁻p, e⁺p

ZEUS (94-07 data): Rq<0.63 x 10⁻³ fm H1 (94-07 data): Rq<0.74 x 10⁻³ fm (preliminary results)

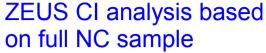
Excellent agreement with SM up to highest Q²

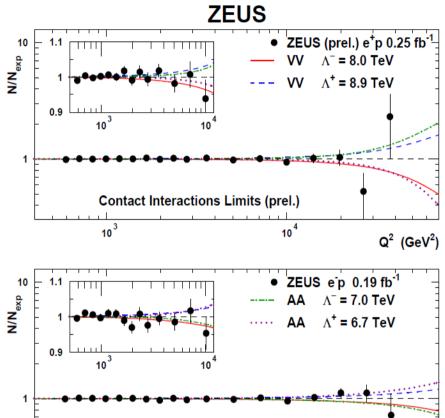
Contact Interactions (CI)

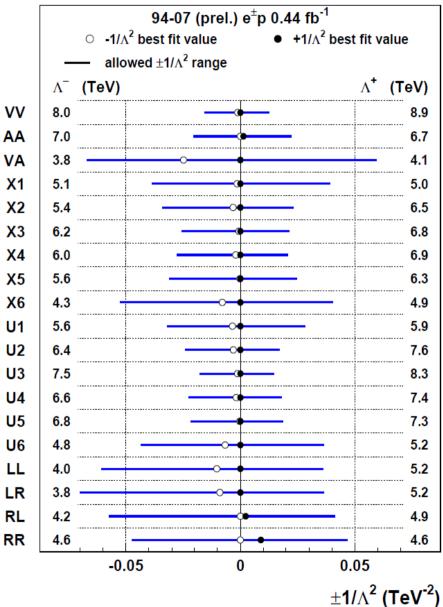

New interactions at higher scale ($\wedge >> \sqrt{s}$) can be effectively described at lower energies as 4-fermion eeqq Contact Interaction.

where α,β are the electrons and quark helicities (L,R)

Coupling η , is related to the mass scale Λ


$$\eta_{\alpha\beta}^{\epsilon q} = \frac{\epsilon g_{CI}^2}{\Lambda^2}$$
 $\epsilon = \pm 1$
 $g_{CI}^2 = 4\pi$



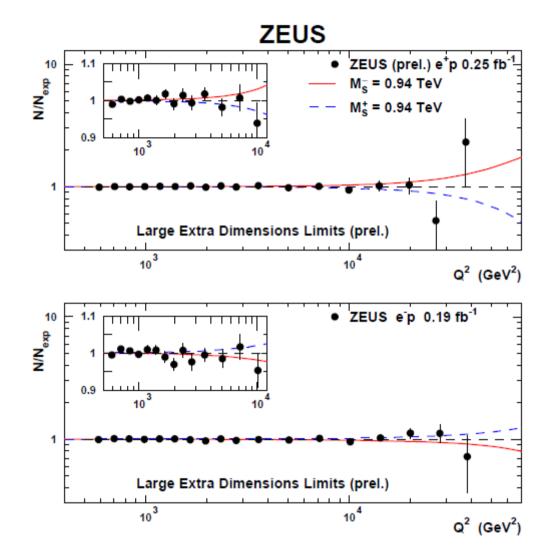

Different models assume different helicity structure of new interactions, given by set of couplings $\eta^{eq}_{\alpha\beta}$

Contact Interactions (CI)

ZEUS (94-07 data): Λ>3.8-8.9 TeV, 95% CL

Contact Interactions Limits (prel.)

Q2 (GeV2)


Search for Large Extra Dimensions

Arkani-Hamed, Dimopoulos, Dvali model (proposed solution to the hierarchy problem)

- •Gravity can propagate to 4+n dimensions
- •effective Plank scale $M_{\scriptscriptstyle D}$ can be ~1TeV
- •At high energies, the strengths of gravitational and electroweak interactions can be comparable.

Graviton exchange contribution to eq→eq interactions can be described as a contact interaction with an effective coupling of

 $\eta \sim 1/M^4$

ZEUS (94-07 data): Ms>0.94 TeV, 95% CL

The Leptoquark Model

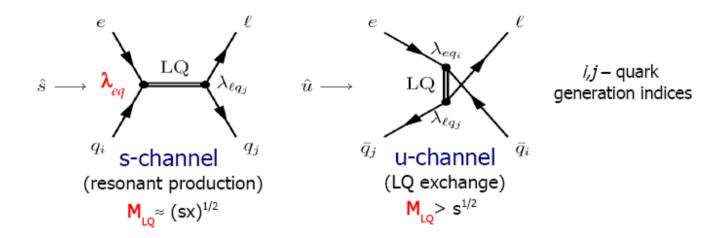
LEPTOQUARKS

Hypothetical bosons which appear in many SM extensions to explain symmetry between leptons and quarks

LQs are coupled to both leptons and quarks and carry SU(3) colour, fractional electrical charge, baryon (B) and lepton (L) numbers

 \rightarrow Fermion number F = 3B + L = 0, 2

Buchmuller-Ruckl-Wyler Model

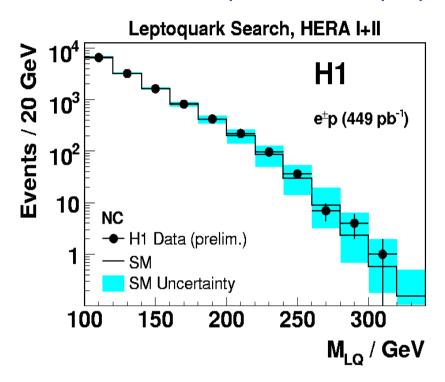

SU(3)_C×SU(2)_L×U(1)_Y invariance Lepton and baryon number conservation Chiral particles: either left- or right-handed couplings

7 scalar and 7 vector LQs

Resonance width $\Gamma \sim \lambda^2 \cdot M_{LQ}$ Each LQ characterized by two free parameters: LQ mass, M_{LQ} LQ-I-q Yukava coupling, λ

F = 2	Prod./Decay	β_e	F = 0	Prod./Decay	β_e
e p Scalar Leptoquarks e⁺p					
$S_{0,L}$	$e_L^- u_L \rightarrow e^- u$	1/2	$S_{1/2,L}$	$e_R^+ u_R \rightarrow e^+ u$	1
	$\rightarrow \nu d$				
$S_{0,R}$	$e^R u_R \to e^- u$	1	$S_{1/2,R}$	$e_L^+u_L \rightarrow e^+u$	1
$\tilde{S}_{0,R}$	$e_R^- d_R \rightarrow e^- d$			$e_L^+ d_L \rightarrow e^+ d$	1
$S_{1,L}$	$e_L^- d_L \rightarrow e^- d$	1	$\bar{S}_{1/2,L}$	$e_R^+ d_R \rightarrow e^+ d$	1
	$e_L^- u_L \rightarrow e^- u$	1/2			
	$\rightarrow \nu d$	1/2			
Vector Leptoquarks					
$V_{1/2,R}$	$e_R^- d_L \rightarrow e^- d$	1	$V_{0,R}$	$e_L^+ d_R \rightarrow e^+ d$	1
	$e_R^- u_L \rightarrow e^- u$	1	$V_{0,L}$	$e_R^+ d_L \rightarrow e^+ d$	1/2
				$\rightarrow \overline{\nu}u$	1/2
$V_{1/2,L}$	$e_L^- d_R \to e^- d$	1	$\tilde{V}_{0,R}$	$e_L^+ u_R \rightarrow e^+ u$	1
$\bar{V}_{1/2,L}$	$e_L^- u_R \to e^- u$	1	$V_{1,L}$	$e_R^+ u_L \rightarrow e^+ u$	1
				$e_R^+ d_L \rightarrow e^+ d$	1/2
				$ ightarrow \overline{ u} u$	1/2

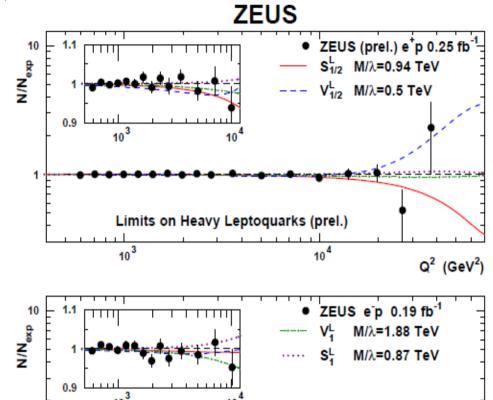
LQ production at HERA



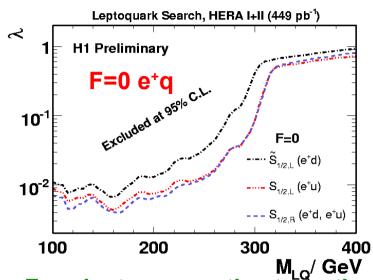
If LQ \rightarrow eq, Lepton Flavor Conserving (LFC) decays, (1st generation LQ's) If LQ \rightarrow µq/ τ q, Lepton Flavor Violating (LFV) decays, (2nd/3rd generation LQ's) resonant production in s-channel exchange in u-channel signature one jet & one I/v final state indistinguishable from SM NC/CC DIS for 1st generation LQs

clear signal if we assume LFV

Search for 1st generations Leptoquarks


Complete HERA e⁺p/e⁻p data analysed, L~0.45 fb⁻¹

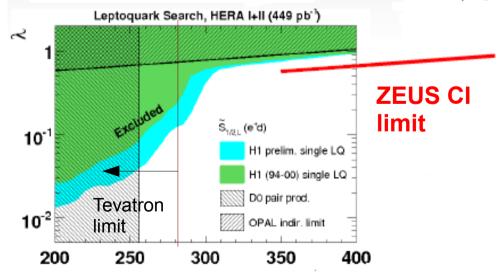
Data analysed taking into account the different polarization periods


No evidence for signal → interpretation in terms of exclusion limits

Limits on Heavy Leptoquarks (prel.)

Analysis similar to CI, limits on Q2 (GeV2)
heavy LQ's

Search for 1st generation Leptoquarks


For electromagnetic strength $\lambda=0.3$

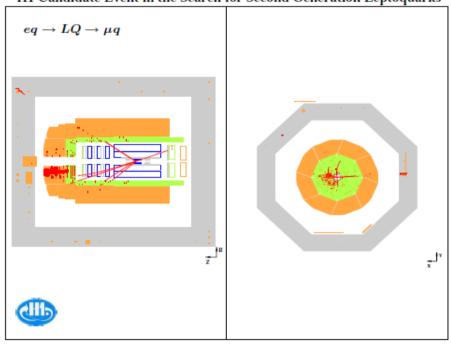
 M_{LQ} <291-330 GeV can be ruled out

ZEUS Preliminary 1994-2007 $e^{\pm}p$				
	95% C.L. (TeV)			
Model Coupling Structure	M_{LQ}/λ_{LQ}			
$S_o^L a_{ii}^{eu} = +\frac{1}{2}$	1.24			
$S_0^R a_{_{BR}}^{eu} = +\frac{1}{2}$	1.02			
\tilde{S}_{\circ}^{R} $a_{gg}^{ed} = +\frac{1}{2}$	0.41			
$S_{1/2}^{L} a_{\iota s}^{eu} = -\frac{1}{2}$	0.94			
$S_{1/2}^{R} \ a_{_{Rl}}^{ed} = a_{_{Rl}}^{eu} = -\frac{1}{2}$	0.81			
$\tilde{S}_{1/2}^{\hat{L}} \ a_{_{LR}}^{ed} = -\frac{1}{2}$	0.60			
S_1^L $a_{ii}^{ed} = +1$, $a_{ii}^{eu} = +\frac{1}{2}$	0.87			
V_{\circ}^{L} $a_{\iota\iota}^{ed} = -1$	1.05			
V_0^R $a_{gg}^{ed} = -1$	0.77			
\tilde{V}_{\circ}^{R} $a_{_{RR}}^{eu}=-1$	1.50			
$V_{1/2}^{L} \ a_{\iota s}^{ed} = +1$	0.50			
$V_{1/2}^R \ a_{_{Rl}}^{ed} = a_{_{Rl}}^{eu} = +1$	1.36			
$\tilde{V}_{1/2}^{\hat{L}} \ a_{\iota s}^{eu} = +1$	1.60			
$V_1^L \ a_{\iota\iota}^{ed} = -1, \ a_{\iota\iota}^{eu} = -2$	1.88			

Limits on heavy LQ's

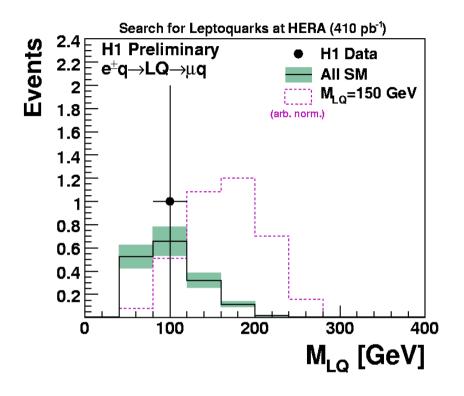
ZEUS (94-07 data): $M_{LQ}/\lambda > 0.41-1,88 \text{ TeV},$ 95% CL

LEP (OPAL, L3): indirect constraints from e⁺e⁻→qq


TEVATRON (D0): qq annihilation or gg fusion (pair production), limit independent of λ

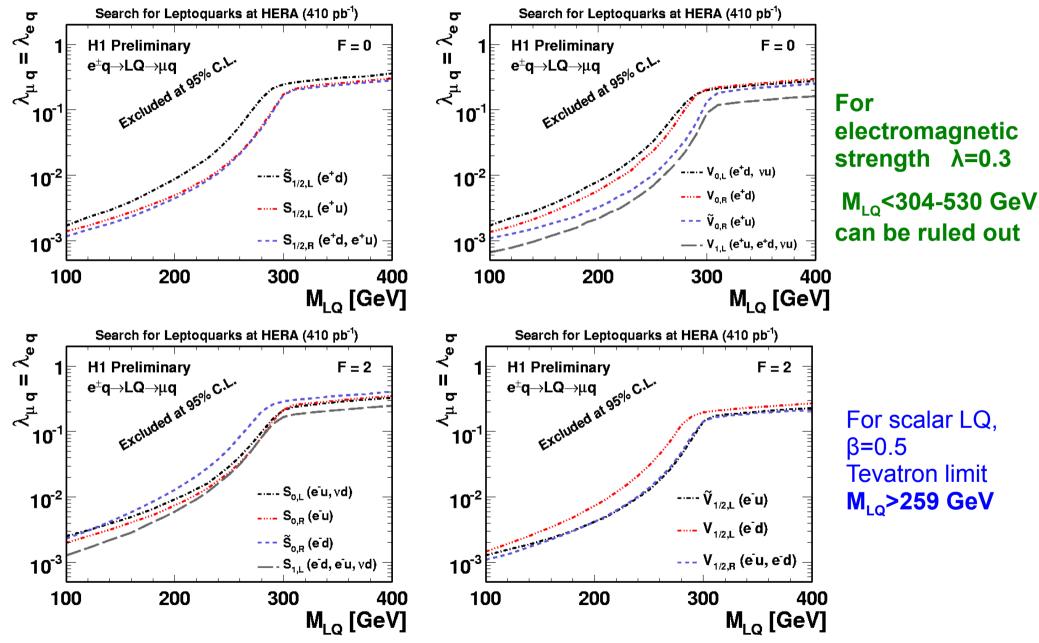
HERA extends the excluded domain

Search for 2nd generation Leptoquarks


LQ could decay to a muon

H1 Candidate Event in the Search for Second Generation Leptoquarks

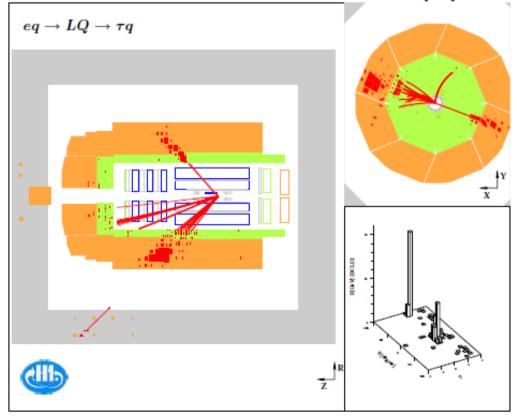
No evidence for signal Limits set for all 14 LQ types, under assumption

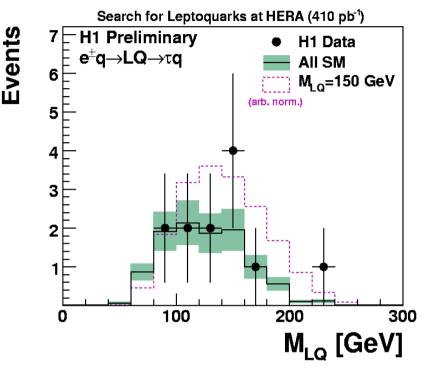

$$\lambda_{\mu q} = \lambda_{eq}, \lambda_{\tau q} = 0$$

H1 HERA (98-07) sample

1 event seen/1.6±0.5 expected

Search for 2st generation Leptoquarks

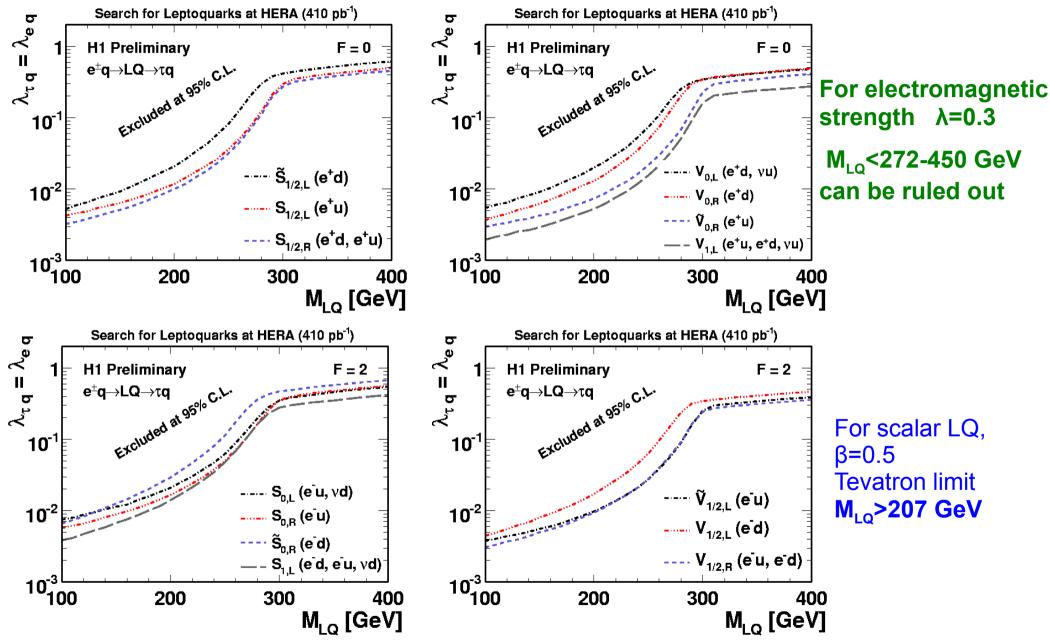



Search for 3rd generation Leptoquarks

LQ could decay to a tau lepton

Signature ep $\rightarrow \tau X$ (τ decays to 1 pronge hadrons)

H1 Candidate Event in the Search for Third Generation Leptoquarks


H1 HERA (98-07) sample

12 events seen/10.6 expected

No evidence for signal Limits set for all 14 LQ types (for hadronic and muonic tau decays)

$$\lambda_{Ta} = \lambda_{ea}, \ \lambda_{ua} = 0$$

Search for 3rd generation Leptoquarks

Conclusions

- •Searches for deviations from SM in high Q² e⁺p and e⁻p DIS data has been performed by H1 and ZEUS based on full HERA datasets (~0.45 fb⁻¹ per experiment)
- No data excess or deviations from SM cross sections have been found.
- •ZEUS (NC DIS): 95% CL limits have been set for different CI mondels
- •H1(NC, CC DIS): 95% CL limits have been set for resonant and non-resonant 1st generation LQ production
- •New limits from H1 on LFV LQ's with the complete HERA dataset
- •HERA limits complementary to Tevatron and LEP limits