

Charm and beauty physics at ATLAS On behalf of ATLAS Collaboration

Takashi Matsushita

Kobe University

matsushita@phys.sci.kobe-u.ac.jp

XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects Convitto della Calza, Firenze, 19th - 23rd April 2010

Outline

- Introduction
 - Quarkonium physics
 - B-physics program for early data
- ATLAS detector
 - di-muon trigger
 - muon reconstruction
- Performance with 900 GeV collision data
 - tracking
 - muon reconstruction
- Expected results
 - Quarkonium
 - B-decay
- Summary

Quarkonium physics

- J/Ψ and Y production cross-sections are predicted to be large at the LHC
 - Study of production mechanism of quarkonium and tests of QCD

- Prompt quarkonia production is important background for many other bphysics processes at LHC
- J/ Ψ \rightarrow $\mu\mu$ and Y \rightarrow $\mu\mu$ are important channels to understand the performance of the ATLAS detector
 - Efficiency determination of muon reconstruction and muon trigger, alignment, magnetic field mapping, material distribution

B-physics program for early data

 Large production cross section through flavour creation, flavour excitation and gluon splitting

- Exclusive production cross-section measurement possible at early stage
 - B+ → J/Ψ K+
 - Clear event topology
 - Reference channel for rare B decay searches
- Suitable for initial detector performance study through masses and proper lifetimes measurements
 - $B^+ \rightarrow J/\Psi K^+$
 - $B_d^0 \rightarrow J/\Psi K^{0*}$
 - $B_s^0 \rightarrow J/\Psi \phi$

ATLAS detector

Muon spectrometer

precision tracking chamber $|\eta| < 2.7$ trigger chamber $|\eta| < 2.4$ $\sigma(p_T)/p_T \sim 10\%~p_T$ for 1 TeV muon

length: ~46m radius: ~22m

weight: ~7000 tons

~108 electronic channels

Inner detector

$$\begin{split} |\eta| < 2.5, & B = 2T\\ \text{Silicon: pixels, strips} \\ \text{Transition Radiation Tracker} \\ & \sigma(p_T)/p_T \sim 3.4 \times 10^{-4} \ p_T \oplus 0.015 \\ & \sigma(d_0) \sim 10 \oplus 140 \ / \ p_T \ \mu m \end{split}$$

 $(p_T \text{ in GeV})$

Three level trigger system

Level1: hardware trigger from muon and calorimeter information

Level2: software trigger to confirm level1 trigger decision

Event Filter: performs event selection using more complex algorithms (

 $(40 \text{ MHz} \rightarrow 75 \text{ kHz})$

 $(\rightarrow 2 \text{ kHz})$

 $(\rightarrow 200 \text{ Hz})$

Di-muon trigger

- Muon pairs can be a clear signature of b-hadrons decaying inclusively to J/Ψ or to di-muons
- Needs efficient di-muon trigger for low-p_T muons to perform Quarkonium and B-physics studies

Level2 di-muon trigger efficiency

Higher level triggers for di-muon seeded by level1 single muon trigger or level1 di-muon trigger

- Search for two muons in a wider η and ϕ region than seeded by level1
- efficient for J/Ψ searches

Search for two muons in η and ϕ regions seeded by level1

Low p_T muon reconstruction

Excellent tracking and muon system for muon reconstruction

- Significant efficiency improvement for p_T < 10 GeV by using tagged muon track
 - Fake rate for J/Ψ sample < 1%</p>

Tracking results from 900 GeV collisions

- Test of vertexing, momentum scale and resolution
 - Reconstructed K_s and Λ masses close to PDG values, width of the invariant mass peaks well reproduced by Monte Carlo

Muon results from 900 GeV collisions

- Statistics limited, dominantly in the forward direction
 - p > 4 GeV, p_T > 2.5 GeV and $|\eta|$ < 2.5
 - 50 candidates with $L = 6 \mu b^{-1}$
- Data and Monte Carlo are consistent with available statistics

Muon trigger is being commissioned with muon from collisions

Expected results on quarkonium with Monte Carlo study

Prompt quarkonia: selection

- J/Ψ from B-decays form significant background to prompt J/Ψ, in addition to muons from b-quark decays
- Measurement of prompt J/Ψ to indirect cross-section relies on separation (and understanding of separation) of these two processes

Pseudo-proper time =
$$\frac{L_{xy} \cdot M_{J/\psi}}{p_T(J/\psi) \cdot c}$$

- Prompt J/Ψ typically have zero proper time while indirect J/Ψ have positive proper time
 - Use pseudo-proper time to separate indirect/prompt
 - Cut at 0.2 ps gives prompt J/Ψ efficiency of 93% with purity of 92%

Results with 14 TeV MC

Prompt quarkonia

- Invariant mass distribution of di-muons
 - Seeded by level1 di-muon trigger
 - Muons from primary vertex
 - Pseudo-proper time cut at 0.2 ps
- Different predictions for polarisation depending on production model

- Polarisation can be determined with θ^*
- $\frac{d r}{d \cos \theta^*}$ $\propto (1 + \alpha \cos^2 \theta^*)$
- θ^* acceptance highly depends on trigger
- Error on σ with 10 pb⁻¹: order of 1%
- Error on α with 10 pb⁻¹:
 - 0.02 0.06 for $p_T(J/\Psi) \sim 10 20$ GeV and above
 - ~ 0.2 for Y

L = 10 pb ⁻¹	J/Y	Y
# of signal	150k	25k
S/B at peak	60	10

Results with 14 TeV MC

Expected results on B-decays

$B^+ \rightarrow J/\Psi K^+$

- Selection
 - J/Ψ reconstruction
 - mass window +- 120 MeV
 - proper decay length > 0.1 mm
 - Cuts on μμK⁺ vertex
 - 1600 B+ candidates with 10 pb-1
- Mass fit

	M(B ⁺)	width of σ(B+)
Relative error	0.02 %	3.5 %

- Lifetime measurement
 - relative error on $\sigma(\tau)$ 2.5%
- Cross section measurement
 - Statistical error ~ 10%
 - Systematic error ~ 15-20%
 - L ~ 10%, BR(B⁺→J/Ψ K⁺) ~ 10%

Results with 14 TeV MC

$B_d^{\ 0} \rightarrow J/\Psi K^{0*}$ and $B_s^{\ 0} \rightarrow J/\Psi \phi$

Selection

- J/Ψ reconstruction
 - mass window +- 180 MeV
- m_{inv}(2 tracks) ~ K^{0*} [φ]
- Cuts on vertex and p_T of B_d [B_s]
- No decay length cut applied

$L = 10 \text{ pb}^{-1}$	signal	pp → J/Ψ X	bb > J/Ψ X
$B_d^0 \rightarrow J/\Psi K^{0*}$	1024	1419	3970
$B_s^0 \rightarrow J/\Psi \phi$	76	2449	1660

mass window +- 12 $\sigma(m_B)$

- Simultaneous fit to mass and decay time to extract mass and lifetime
 - Mass can be measured with a precision of ~ 10⁻³
 - Lifetime can be measured with a precision of 10%

$B_d^0 \rightarrow J/\Psi K^{0*}$ with 10 pb⁻¹

 $B_s^0 \rightarrow J/\Psi \phi \text{ with } 150 \text{ pb}^{-1}$

Results with 14 TeV MC

Summary

- ATLAS is well prepared for charm and beauty physics
 - J/Ψ, Y
 - At 7 TeV cross-section ratio of indirect to prompt J/Ψ will be measured with a few pb⁻¹ and polarisation with order of 100 pb⁻¹
 - $B^+ \rightarrow J/\Psi K^+$, $B_d^0 \rightarrow J/\Psi K^{0*}$, $B_s^0 \rightarrow J/\Psi \phi$
 - cross-section, mass and lifetime measurements possible with 10 pb⁻¹
 150 pb⁻¹
 - All these samples are important for detector study as well
- ATLAS is now collecting p-p collision data at 7 TeV
 - Stay tuned for the results from ATLAS