

Limitations on the predictions for p_T -balance in events with a Z-boson and jets

A. Paramonov on behalf of CDF Collaboration DIS 2010 – Florence - 20 Apr. 2010

Introduction

- Accurate description of multi-jet final states is important for the discovery potential of the LHC experiments.
- We focus on aspects of the Monte Carlo (MC) simulations which affect jet energy
 - Jet p_T
 - Top mass
 - Missing- E_{T}
 - Background Estimates
 - Di-jet invariant mass
- Measure theoretical uncertainties contributing to the jet energy measurements
- Identify sources of uncertainties contributing to the jet measurements
- Indicate which elements of the MC simulations (PYTHIA) have to be improved to make it more accurate

The CDF II Detector

• **4.62 fb⁻¹ of pp-bar** collisions from the Tevatron accelerator

Analysis technique

- P_{T} -balance in events with a Z-boson and a Jet
 - Uncertainties and features of theory predictions for the $P_T(jet)/P_T(Z)$ as a function of $P_T(Z)$
- Jet Energy Scale at CDF included uncertainties on the jet energies
 - State-of-art measurement with 300 pb⁻¹
- Now we revisit individual uncertainties caused by SM simulations, PYTHIA, using a high-statistics dataset
- Out-of-Cone (dashed red) dominates at low P_T

jet

Y,Z

 $\Delta \Phi$

A. Paramonov - DIS 2010 - Florence

Event Selection CDF Run II Preliminary

240 Z+jet, $\Delta \phi$ (Z-jet)>3.0 rad, jet cone = 0. 220 -+ Data - 4.6 fb⁻¹ 200 Pvthia Z-boson is back-to-back to a jet: Alpaen 180 160 $Z \rightarrow e^+e^$ entries 140 $Z \rightarrow \mu^+ \mu^-$ 120 100 80 < M(Z) < 100 GeV JETCLU clustering (cone sizes: 0.4, 0.7, & 1.) PT(jet1) > 8 GeV 0.2 < |ŋ(jet1)| < 0.8 20 30 40 50 60 $P_{\tau}(Z)$ [GeV/c] $P_{\tau}(jet2) < 8 \text{ GeV}$ **CDF Run II Preliminary** $|\Delta \phi(Z - jet1)| > 3.0 rad.$ ٠ $P_{T}(Z)>25$ GeV/c, $P_{T}(jet2)<3$ GeV/c, jet cone = 0.4 + Data - 4.6 fb⁻¹ $P_{T}(Z) > 25$ GeV (to avoid soft, poorly Pvthia measured jets) entri $P_{T}(jet)/P_{T}(Z)$: good agreement 20

when $P_{\tau}(jet2) < 3 \text{ GeV}$:

Perfect 2-body system

70

0.4 0.6 0.8 1 1.2 1.4 1.6

 $P_{T}(jet1)/P_{T}(Z)$

80

A. Paramonov - DIS 2010 - Florence

10

0.2

SM Predictions (MC generators)

<u>PYTHIA (stand-alone)</u> (used to establish JES)	ALPGEN+PYTHIA (Matrix Elements & Parton Shower calculations)
Exact ME for Z+0p + a correction to Initial State Radiation	Exact ME's for up to 4 partons
No need for jet-parton matching	Jet-parton matching is @ 15 GeV for cone- 0.4 jets to avoid double-counting

Same UE, Same PDF (CTEQ5L), same showering

Time

Observed P_T -balance

- Jets in Pythia samples have 4.7% more energy than in data for $P_T(Z) > 25 \text{ GeV}$
- Measured energy is sensitive to the fraction of quark and gluon jets.
- Is the mix of quark and gluon jet properly modeled?
- Do PDF's and tree-level diagrams give the right fraction?

Validation: rapidity distributions

- The rapidity distributions are sensitive to PDF's and contributions from qg→Zq and qqbar→Zg diagrams
- Pythia and Alpgen describe data well
- ME and PDFs are correct in Pythia

Validation: # of tracks

- Number of tracks observed within the jet cone
- Pythia describes in-cone hadronization and fragmentation accurately
- Many other studies of shower properties
- In-cone radiation is well modeled; quark-gluon fraction is correct

Uncertainty on the out-of-cone radiation

- Study out-of cone radiation with correlations between P_T-balance and properties of the 2nd jet.
- Data indicates that PYTHIA underestimated the amount of out-of-cone radiation (large-angle FSR)
- Discrepancy becomes smaller with larger jet cone sizes.
- Overall, impressive agreement between the LO simulation and data

10

Summary of Uncertainties

- We have went the uncertainties on the SM MC simulations
- The uncertainty due to large-angle parton radiation (FSR) is the largest on the theoretical predictions
 CDF Run II Preliminary

Source of uncertainty	jet cone $= 0.4$	jet cone $= 0.7$	jet cone $= 1.0$
renormalization and factorization scales	+0.9 - 0.0	+0.9 - 0.4	± 0.4
FSR parameters in PYTHIA	± 0.4	± 0.1	± 0.1
ME's and parton-jet matching	+0.8 - 0.0	+1.1 - 0.0	+0.8 - 0.0
single particle response	± 2.5	± 2.5	± 2.5
multiple proton interactions	+1.0-0.0	+1.2 -0.0	+1.2 -0.0
large-angle FSR, limitation of PS	+0.0 - 2.9	+0.0 - 0.2	+1.7 - 0.0
Estimate of the total variation	+3.0 - 3.8	+3.1 - 2.5	+3.4 - 2.5
The observed discrepancy	+4.7	+3.2	+2.0

The table presents variation of the MC prediction of $\langle P_T(jet)/P_T(Z) \rangle$ in % (percent) and the difference between data and PYTHIA predictions (The observed discrepancy).

Conclusions

- We have investigated the systematic uncertainties affecting the measurements of jet energies
- Overall, PYTHIA works described data very well
- Parton radiation at large angles is the largest source of uncertainty on the predictions
- A new generation of SM simulations (and tunes) promises higher accuracy:
 - MC@NLO
 - Powheg
 - New parton showers and their tunes in Pythia and Herwig

