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Optical Theorem:




Factorization:

~ Amati-Petronzio-Veneziano, Efremov-

Collinear factorization (for DGLAP) 5adyushkin, Libby-Sterman, Brodsky-
epage, ..

k; —factorization (when BFKL is used)  Catani-Ciafaloni-Hautmann



Amplitude of forward Compton scattering

Alﬂf’ 4, P f (3754

K acts as IR cut-off for IR-sensitive contributions




integration over K should be free of UV and IR -
divergences

requirements for T




Born approximation

UV behavior: a4 Eyclidean k d4k ~ dkk?’

So,atlargek A ~ fdki—gT(k) - T

In Pert QCD T is gluon propagator: T — 1/1{2




In Minkowsky space:

ati

k=-ap+8(qg+zp)+kL

So that

k? = —aqfw — ki, 2pk = aw,2qk = (B + za)w
W= 2pq

Alpert) _ vu(@tk)y | (k=@
B — (¢+R)2 T (g—k)3




f fooo do /%Agert) (q, k)

T = T((p+k)* #?) = T(we, (waf + k7))

Beyond the Born approximation

= | G AP (0, k) gz

where

B ~w(a? + (7)) + k%



There are two different situations beyond Born approximation:

S A ~ Flsinglet <=

vacuum numbers in t-channel

Cx NS NS S
\914 ~ Fl 791 791 <= | hon-vacuum numbers in t-channel




singlet and non-singlet have different perturbative contributions:
ALY = L(90) M(n(wB/k2), n(Q*/K?))

APTY = LM(n(wB/k?), n(Q?/k?))

Amplitudes M are different for different amplitudes and in different approaches
but their arguments are always the same

M = Z 1n? (wﬁ/kZ) In’ (QQ/]@Q) + non-logarithmic contributions




As = [dk2 % da (;;_g) Ms (In(wB/k*),1n(Q* /k?)) 735 Ts (war, k)

Ans = [dki FdaMys (In(wB/k?),In(Q*/k?)) 78=Tns(wa, k?)

Ag = [dk? % (wB) M [ dag5sTs (wa, k) fdag—i,Ts(Oé)

Ays = [dk? G Mys [ dogsnTs(wa, k) [ da2;Tyg(a)

to arrive at




Application to DIS structure functions

fg = [dk? & (wB) £& (wB, k%, Q%) [ dov3= ST (war, k?)|

[




Singlet

2 er
fs ~ [ B2 () 18°7(@Q2 wd, Q2 /) @5 (5, K2

g —fkg 7 daQSTs (wa, k?)

Q*/wB =/

Non-singlet

fys ~ | dkkz dﬁf(pert)(@/’wﬁ, QW@)‘PJIS(@ k1)

k2w
Pns = fion doSTys(we, kY )



Tg ~ A —tp by ~ ,8_1+h

TNS ~ Oé_l_h - (I)NS ~ ,Gh

Transition to DGLAP: Collinear factorization

o= o(6,k)]

Forinstance: & ~ ([, k’i)é((ki — u?)



fvs ~ [ LI (@/8,Q% 1) ns (B, 12)

However, there is no /,l, dependence in the case of DGLAP because DGLAP
collects leading logs of QZ only, Sub-leading logs will be l,l,-dependent

In™(Q?/u?t) ~In"(Q?*/u3) +sub-leading

Pygs ~ B" dg ~ gITA



Comparison to standard DGLAP fits:
Altarell-Bal-Forte-Ridolfi, Leader-Sidorov-Stamenov,
Blumlein-Botcher, Hirai, ...

Typical expressions:

excludes singular factors for
all other structure functions




However in practice these requirements are violated

Reason why singular factors are necessary in DGLAP at small x

DGLAP does not include resummations of In"™ (1/517) , S0 without singular
factors X—a DGLAP expressions grow too slowly to match experiment

Factors X—a, bring the appropriate growth at small x They mimic resummation of
lnn(l/x) and eventually, at X —> () they change the classic DGLAP

asymptotics  f~ 6\/11’1(1/33) for the Regge onef ~ 1~ @

When the resummation is accounted for, they should be dropped,
which simplifies fits



CONCLUSION

Integrability of forward Compton amplitudes imposes the following
restrictions on DGLAP fits for initial parton densities:

1. Singular factors % can be used in fits for singlet F, only,
providing a<l

2. Singular factors should not be used for all other structure functions.
Instead, one should use total resummation of " (1 / ;U)

3. Necessity to use singular factors is a good indication that important
logs of x are missing from theoretical expressions



