Neutrino dimuon production and the dynamical determination of strange parton distributions

Pedro Jimenez-Delgado

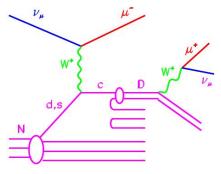
DIS2010

University of Zurich

Neutrino dimuon production and the dynamical determination of strange parton distributions

Dimuon production

The dynamical approach


Fitting the data

The strangeness asymmetry

Relevance for the NuTeV anomaly

Dimuon production

Signature: Two muons of different sign

Directly related to **charged current charm production** $\propto s(x, Q^2)$ (FFNS)

Sensitive to differences between s and \bar{s}

Overall normalization proportional to B_c

[NuTeV Coll. PRD64 (2001) 112006]

$$\frac{d\sigma^{+}}{dxdy}(x,y,E_{\nu(\bar{\nu})}) = \frac{G_{F}^{2}ME_{\nu(\bar{\nu})}}{\pi} B_{c} \mathscr{A}(x,y,E_{\nu(\bar{\nu})}) \frac{d\sigma^{\nu(\bar{\nu})}}{dxdy}(x,y,E_{\nu(\bar{\nu})})$$

Acceptance corrections [Kretzer et al.] at NLO!

Nuclear corrections (iron) using FFNS NLO GRV98 [de Florian et al.]

📋 University of Zurich

Idea: at low-enough Q^2 only "valence" partons would be "resolved" \rightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)DYNAMICAL: "STANDARD": $Q_0^2 < 1 \, \text{GeV}^2$ optimally determined $Q_0^2 = 2 \, \text{GeV}^2$ arbitrarily fixeda > 0 "valence-like" \downarrow

 $xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$

Positive definite input distributionsArbitrary fine tunning (g < 0!)QCD predictions for $x \le 10^{-2}$ Extrapolations to unmeasured regionMore restrictive, less uncertaintiesLess restrictive, marginally smaller χ^2

Physical aid for determining CC for DGLAP \neq NP structure of the nucleon

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

 $Q_0^2 < 1 \,\text{GeV}^2$ optimally **determined a** > 0 "valence-like"

"STANDARD":

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily fixed

Unrestricted parameters

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

Positive definite input distributionsArbitrary fine tunning (g < 0!)QCD predictions for $x \leq 10^{-2}$ Extrapolations to unmeasured regionMore restrictive, less uncertaintiesLess restrictive, marginally smaller χ^2

Physical aid for determining CC for DGLAP \neq NP structure of the nucleon

()) University of Zurich

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \rightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

 $Q_0^2 < 1 \,\text{GeV}^2$ optimally determined **a** > 0 "valence-like"

"STANDARD":

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily fixed

Unrestricted parameters

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

Positive definite input distributionsArbitrary fine tunning (g < 0!)QCD predictions for $x \leq 10^{-2}$ Extrapolations to unmeasured regionMore restrictive, less uncertaintiesLess restrictive, marginally smaller χ^2

Physical aid for determining CC for DGLAP \neq NP structure of the nucleon

1 University of Zurich

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \rightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

 $Q_0^2 < 1 \,\text{GeV}^2$ optimally **determined a** > 0 "valence-like"

"STANDARD":

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily fixed

Unrestricted parameters

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

Positive definite input distributionsArbitrary fine tunning (g < 0!)QCD predictions for $x \lesssim 10^{-2}$ Extrapolations to unmeasured regionMore restrictive, less uncertaintiesLess restrictive, marginally smaller χ^2

Physical aid for determining CC for DGLAP \neq NP structure of the nucleon

1) University of Zurich

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally **determined** $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily **fixed** $\mathbf{a} > 0$ "valence-like"

"STANDARD":

Unrestricted parameters

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

Arbitrary fine tunning (g < 0!)**Positive definite** input distributions QCD predictions for $x \le 10^{-2}$ **Extrapolations** to unmeasured region Less restrictive, *marginally* smaller χ^2 More restrictive. less uncertainties

University of Zurich

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

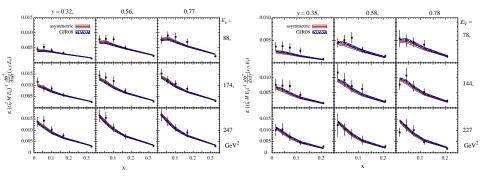
 \rightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally **determined** $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily **fixed** $\mathbf{a} > 0$ "valence-like"

"STANDARD":

Unrestricted parameters


$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

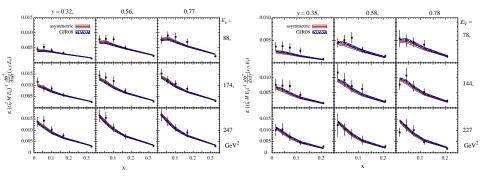
Arbitrary fine tunning (g < 0!)**Positive definite** input distributions OCD predictions for $x \le 10^{-2}$ **Extrapolations** to unmeasured region Less restrictive, marginally smaller χ^2 More restrictive. less uncertainties

Physical aid for determining CC for DGLAP \neq NP structure of the nucleon

University of Zurich

Fitting the data

Already well described by GJR08: $\chi^2 = 65$ for 90 data points (1 σ)


 \Rightarrow radiatively generated strangeness plausible!: $s(x, Q_0^2) + \bar{s}(x, Q_0^2) = 0$

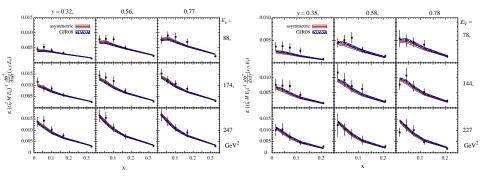
Introducing an asymmetry χ^2 goes down to 60: $s(x,Q_0^2) - \bar{s}(x,Q_0^2) \neq 0$

Neutrino increases, antineutrino decreases \Rightarrow "positive" asymmetry

University of Zurich

Fitting the data

Already well described by GJR08: $\chi^2 = 65$ for 90 data points (1 σ)


 \Rightarrow radiatively generated strangeness plausible!: $s(x, Q_0^2) + \bar{s}(x, Q_0^2) = 0$

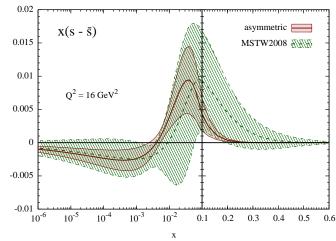
Introducing an asymmetry χ^2 goes down to 60: $s(x,Q_0^2) - \bar{s}(x,Q_0^2) \neq 0$

Neutrino increases, antineutrino decreases \Rightarrow **"positive" asymmetry**

University of Zurich

Fitting the data

Already well described by GJR08: $\chi^2 = 65$ for 90 data points (1 σ)

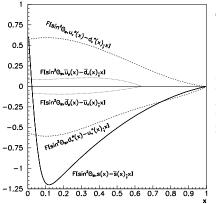

 \Rightarrow radiatively generated strangeness plausible!: $s(x, Q_0^2) + \bar{s}(x, Q_0^2) = 0$

Introducing an asymmetry χ^2 goes down to 60: $s(x, Q_0^2) - \bar{s}(x, Q_0^2) \neq 0$

Neutrino increases, antineutrino decreases \Rightarrow "positive" asymmetry

III) University of Zurich

The strangeness asymmetry



Compatible with previous determinations but smaller uncertainties

Very small effect (for most applications): $S^- \equiv \int_0^1 dx \, x(s-\bar{s}) = 0.0008 \pm 0.0005$ Important for dedicated experiments (e.g. NuTeV anomaly)

Relation to the NuTeV anomaly

Experimental methods(functionals): $\Delta s_W^2 = \int_0^1 F[s_W^2, \delta^{(-)}_q; x] x \delta^{(-)}_q(x, Q^2) dx$

Total shift: $\Delta s_W^2|_{\text{total}} =$ = $\Delta s_W^2|_{\text{QED}} + \Delta s_W^2|_{\text{NP}} + \Delta s_W^2|_{\text{strange}}$

Isospin-symmetry violating PDFs:

NP mass effects: $\Delta s_W^2|_{\text{NP}}$ [Londergan et al.] radiative QED effects: $\Delta s_W^2|_{\text{QED}}$

Strange asymmetric PDFs: $\Delta s_W^2|_{\text{strange}}$

All effects combined remove the "anomaly" (within SM)!

Using $R^{-} \equiv \frac{\sigma_{\rm NC}^{vN} - \sigma_{\rm NC}^{vN}}{\sigma_{\rm CC}^{vN} - \sigma_{\rm CC}^{vN}} = R_{\rm PW}^{-} + \delta R_{I}^{-} + \delta R_{s}^{-}$ overestimates the corrections ($\approx 20\%$ -40%)

Conclusions

Strangeness in the nucleon well determined by dimuon-production data Dynamical approach: more predictive and smaller uncertainties Within the dynamical approach $s(x, Q_0^2) + \bar{s}(x, Q_0^2) = 0$ works well! Data well described by strange-symmetric (NLO) distributions However a small positive asymmetry preferred NuTeV "anomaly" removed (within SM) by several effects Corrections to the PW relation overestimates the effects

