The ATLAS Forward Physics Program

Christophe Royon
DAPNIA-SPP, CEA Saclay
On behalf of the ATLAS collaboration

DIS 2010 April 2010, Florence, Italy

Contents:

- ATLAS Forward Detectors
- Diffraction using rapidity gap
- ALFA
- ATLAS Forward Physics project (AFP)

ATLAS detector

See talk by Andrew Brandt for more details

ATLAS forward detectors

See talk by Andrew Brandt for more details

ATLAS Diffractive physics

Diffractive studies:

- Study of diffractive events using forward rapidity gap method at low luminosity (or in dedicated runs): low pile-up; forward rapidity gap in FCAL (3.2< $|\eta|$ <4.9), LUCID (5.6< $|\eta|$ <6.0) and ZDC ($|\eta|$ >8.3)
- Central gaps: Hadronic calorimeter ($|\eta|$ <3.2) and inner detectors ($|\eta|$ <2.5)
- Diffractive measurements at low luminosity using ALFA
- Diffractive measurements at high luminosity: ATLAS Forward Physics project
- Hard diffraction: jets, Z, W, Higgs..., hard processes calculable in pQCD, info on Pomeron structure, discovery physics
- Soft diffraction: total cross section, gap survival probability...

Hard single diffraction

- ullet Look for hard scatter events (jets, W...) with gap on one side of the detector
- Gap defined using LUCID/ZDC and FCAL
- Compare gap/non-gap ratio to determine soft survival probability
- As an example, approximately 5000 (8000) SD dijet events in 100 pb $^{-1}$ with jet transverse energy above 20 (40) GeV after trigger prescale

DPE and Central Exclusive Processes measurements

- Request two central jets in central ATLAS detector ($|\eta| < 2.5$) and gap on both sides using FCAL, LUCID and ZDC
- Measure DPE and CEP and compare with CDF results using dijet mass fraction for instance

Photon induced lepton pair production

- Exclusive dilepton production: two isolated leptons back-to-back, gaps in forward region, exclusive vertex (no other tracks than from leptons), $\sigma \sim 10$ pb for $p_T > 2.5$ GeV
- Photon induced dilepton pair production: can be used for luminosity calibration, low p_T lepton ID studies, standard candle at high luminosity for BSM phsyics ($\gamma\gamma \rightarrow$ sleptons, Higgs, WW...)
- Photoproduction processes: J/Ψ , Υ resonances ($\sigma \sim 10$ pb) which can be used to constrain the unintegrated gluon distribution (important for Exclusive production)

Jet gap jet events

- Dijet production via single exchange: require two jets and a central gap
- Test of BFKL NLL cross section: Implemented in HERWIG (C. Marquet, C. Royon)
- Complementary tests for BFKL in Mueller-Navelet jets

Total cross section measurement using ALFA

- Measurement of the elastic cross section in the Coulomb and interference region
- Coulombian term, Interference term, Nuclear term:

$$\frac{dN}{dt} = L \left(\frac{4\pi\alpha^2 G^4(t)}{|t|^2} - \frac{\alpha\rho\sigma_{tot}G^2(t)e^{-B|t|/2}}{|t|} + \frac{\sigma_{tot}^2(1+\rho)^2 e^{-B|t|}}{16\pi} \right)$$

• Requires a measurement of elastic cross section down to $t\sim 3.7~10^{-4}$ GeV², which means an angle down to 3 μ rad. using ALFA roman pots and dedicated high β^* runs

Measurement procedure and results

- Luminosity, total cross section, B, ρ are determined by fitting the dN/dt spectrum in the interference, nuclear regions
- Total uncertainties estimated to be less than 3% (beam properties: 1.2%, detector properties: 1.4%, background substraction: 1.1%, stat error: 1.8% for 100 hours of measurement at a luminosity of 3.6 10³²

Soft single diffraction with ALFA

- ALFA has good acceptance for single diffractive events in dedicated runs
- ullet Measure forward proton spectrum in the region: $6.3 < E_{proton} < 7 \text{ TeV}$
- SD measurements for $\xi < 0.01$ and non-diffractive proton measurements for $0.01 < \xi < 0.1$
- \bullet Expect ${\sim}1.5$ million events in 100 hours at $10^{27}~\text{cm}^{-2}\text{s}^{-1}$

The ATLAS Forward Physics Project (AFP)

- Additional proton detectors located at 220 and 420 m
- Movable beam pipes (lack of space at 420 m in cold region of LHC
- Measure proton position (3D Si) and time of flight (GASTOF, QUARTIC)

SUSY Higgs Signal significance using AFP

- Signal and background full simulation, pile up effects taken into account for h production at $\tan \beta \sim 40$, 8 times higher cross section than SM
- \bullet Significance $>3.5\sigma$ for 60 ${\rm fb^{-1}}$ after detector acceptance
- Significance $> 5\sigma$ in 3 years at 10^{34} with timing detectors
- Diffractive Higgs boson production complementary to the standard search

WW production via photon exchange at the LHC

- Study of the process: $pp \rightarrow ppWW$
- Clean process: W in central detector and nothing else, intact protons in final state which can be detected far away from interaction point
- \bullet Study of anomalous $W\gamma$ couplings predicted by Higgsless / extradim models
- Present LEP limits can be improved by up to four orders of magnitude reaching the expected values for Higgsless models (see talk by C. Royon about anomalous coupling)

Conclusion: Diffractive program in ATLAS

Luminosity	Possible measurements
$10~{ m pb}^{-1}$	Jet gap jet (Mueller Navelet)
	Soft single diffraction
	total cross section (ALFA)
	Hard Single diffraction (jets, b jets)
$10\text{-}100 \text{ pb}^{-1}$	Central exclusive production (jets)
	Single diffractive W/Z
$100-200 \text{ pb}^{-1}$	WW via photon exchange
	dilepton production
	$CEP\ \tau\tau$
$30 \; \text{fb}^{-1}$	Higgs (with AFP)
	Anomalous $W\gamma$ couplings (with AFP)
	Test of Higgsless / extradim models (with AFP)

Many different possible measurements using rapidity gap method (low luminosity), ALFA, and AFP project