Content Good - Walker Dipole Cascade Models,

Gösta Gustafson

Department of Theoretical Physics Lund University

DIS2010, Florence, 19-23 April 2010

Work in collaboration with Christoffer Flensburg

Content

1. Diffractive excitation often treated by two mechanisms:

a) Low mass: Good–Walkerb) High mass: Triple Regge

How are these related?

2. Fluctuations

- 3. Saturation "Enhanced diagrams"
- 4. Bare pomeron in Good-Walker picture

Eikonal approximation

Diffraction, saturation, and multiple interactions more easily described in impact parameter space

Convolution in transv. mom. \sim Multiplication in b-space

Scattering driven by absorption into inelastic states i, with weights $2f_i$

 \Rightarrow Elastic amplitude $T = 1 - e^{-F}$, with $F = \sum f_i$

For a structureless projectile we find:

$$\begin{cases} d\sigma_{tot}/d^2b \sim \langle 2T \rangle \\ \sigma_{el}/d^2b \sim \langle T \rangle^2 \\ \sigma_{inel}/d^2b \sim \langle 1 - e^{-\sum 2f_l} \rangle = \sigma_{tot} - \sigma_{el} \end{cases}$$

4

Good - Walker

If the projectile has an internal structure, the mass eigenstates can differ from the eigenstates of diffraction

Diffractive eigenstates: Φ_n ; Eigenvalue: T_n

Mass eigenstates: $\Psi_k = \sum_n c_{kn} \Phi_n \quad (\Psi_{in} = \Psi_1)$

Elastic amplitude: $\langle \Psi_1 | T | \Psi_1 \rangle = \sum c_{1n}^2 T_n = \langle T \rangle$

 $d\sigma_{el}/d^2b\sim (\sum c_{1n}^2T_n)^2=\langle T
angle^2$

Amplitude for diffractive transition to mass eigenstate Ψ_k :

$$\langle \Psi_k | T | \Psi_1 \rangle = \sum_n c_{kn} T_n c_{1n}$$

$$d\sigma_{diff} / d^2 b = \sum_k \langle \Psi_1 | T | \Psi_k \rangle \langle \Psi_k | T | \Psi_1 \rangle = \langle T^2 \rangle$$

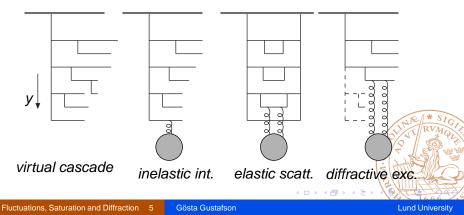
 Diffractive excitation determined by the fluctuations:

$$d\sigma_{diff\,ex}/d^2b = d\sigma_{diff} - d\sigma_{el} = \langle T^2 \rangle - \langle T \rangle^2$$

What are the diffractive eigenstates?

Miettinen-Pumplin (1978), Hatta et al. (2006)

Parton cascades, which can come on shell through interaction with the target

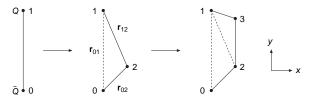


Dipole Cascade Models

Dipole cascade models

Mueller Dipole Model

Evolution in transverse coordinate space



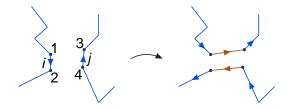
Emission probability: $\frac{d\mathcal{P}}{dy} = \frac{\bar{\alpha}}{2\pi} d^2 \mathbf{r}_2 \frac{r_{01}^2}{r_{02}^2} r_{42}^2$

Color screening: Suppression of large dipoles \sim suppression of small k_{\perp} in BFKL

Good - Walker Dipole Cascade Models Nature of the fluctuations,

Dipole-dipole scattering

Single gluon exhange \Rightarrow Color reconnection



Born amplitude:
$$f_{ij} = rac{lpha_s^2}{2} \ln^2 \left(rac{r_{13}r_{24}}{r_{14}r_{23}}
ight)$$

Reproduces LL BFKL

Fluctuations, Saturation and Diffraction 7 Gösta

Gösta Gustafson

Lund Dipole Cascade model¹

The Lund model is a generalization of Mueller's dipole model, with the following improvements:

- Include NLL BFKL effects
- Include Nonlinear effects in evolution
- Include Confinement effects

MC: DIPSY

Initial state wavefunctions:

 γ^* : Given by perturbative QCD. $\Psi_{T,L}(r, z; Q^2)$

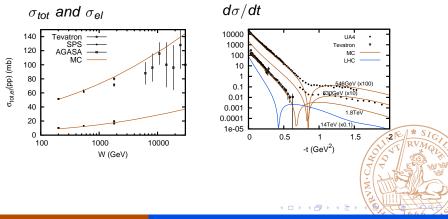
proton: Dipole triangle

¹E. Avsar-Flensburg-GG-Lönnblad

Good - Walker^{*} Dipole Cascade Models Nature of the fluctuations,

Total and elastic cross sections

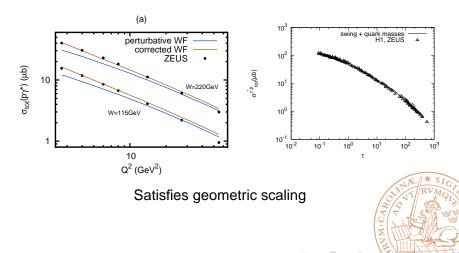
рр



Fluctuations, Saturation and Diffraction 9 Gösta Gustafson

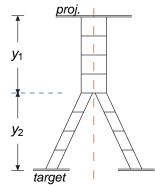
Good - Walker Dipole Cascade Models Nature of the fluctuations,

 $\gamma^* p$



Good - Walker Dipole Cascade Models Nature of the fluctuations

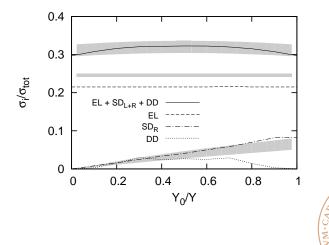
Diffractive cross sections Relation Good-Walker — Triple Regge



 $\langle \langle T \rangle_{targ}^2 \rangle_{proj}$ gives diffractive scattering with $M_X^2 < \exp(y_1)$ Vary y_1 gives $d\sigma/dM_X^2$

Good - Walker Dipole Cascade Models Nature of the fluctuations,

pp 1.8 TeV



Fluctuations, Saturation and Diffraction 12 Gösta Gustafson

Lund University

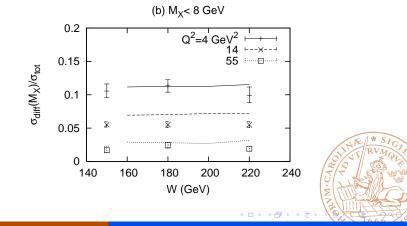
< □ > < 🗗

* SIC

Good - Walker Dipole Cascade Models Nature of the fluctuations,

 $\gamma^* p$

Example $M_X < 8$ GeV, $Q^2 = 4, 14, 55$ GeV².



Nature of the fluctuations

What is the nature of the fluctuations?

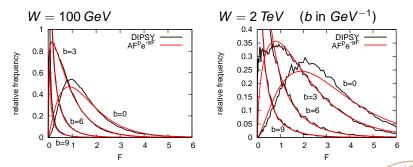
 $\gamma^* p$: $\frac{dP}{dF} \approx A F^{-p}$ (with cutoff for small F-values) $\Rightarrow d\sigma_{diff.ex.} \approx (1 - 1/2^{2-p}) \cdot d\sigma_{tot}$ $W = 220 Q^2 = 14$ 100000 DIPSY b=6AF^{-p} + cutoff 10000 elative frequency h=41000 100 b=2 10 b=9 0.1 0 0001 0.001 0.01 1e-05 01 The power p is independent of b (but grows slowly with Q^2) $rac{\sigma_{diff}}{\sigma_{tot}}\sim 0.18$ for $Q^2=14\,{
m GeV}^2$ falling to ~ 0.13 at $Q^2=50\,{
m GeV}^2$

Fluctuations, Saturation and Diffraction 14

Gösta Gustafson

Nature of the fluctuations

Born approximation large. Distribution pp: $\frac{dP}{dE} \approx A F^{p} e^{-aF}$



a is independent of b (but falling with energy),

 $\frac{d\sigma_{d.ex.}}{d\sigma_{tot}} = \frac{1}{2a} \sim 0.35$ for W = 100 GeV The variance in the Born amplitude is similar to $\gamma^* p$ for lower Q^2 -values

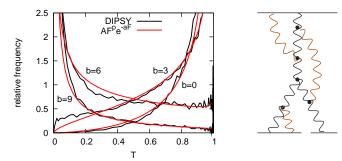
Fluctuations, Saturation and Diffraction

Gösta Gustafson

Saturation reduces the fluctuations

$\langle \textbf{\textit{F}} \rangle$ is large \Rightarrow Unitarity effects important

T-distribution, W = 2 TeV



"Enhanced diagrams"

Saturation \Rightarrow Factorization breaking in diffractive excitation

Fluctuations, Saturation and Diffraction 16 Gösta Gustafson

Impact parameter profile

Central collisions: $\langle T \rangle$ large \Rightarrow Fluctuations small

Peripheral collisions: $\langle T \rangle$ small \Rightarrow Fluctuations small W = 2000 GeV1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 b W = 2000 GeV

Largest fluctuations when $\langle F \rangle \sim$ 1 and $\langle T \rangle \sim 0.5$

Circular ring expanding to larger radius at higher energy

Nature of the fluctuations^{*} Relation Good–Walker — Triple-Regge Summary

Relation Good–Walker — Triple-Regge

BARE pomeron without saturation effects

Total, elastic and singel diffractive cross sections



Lines are triple-Regge fit with a single pomeron pole

$$lpha(0) = 1.21, \ lpha' = 0.2 \,\mathrm{GeV}^{-2}$$

 $g_{pP}(t) = (5.6 \,\mathrm{GeV}^{-1}) \,e^{1.9t}, \ g_{3P}(t) = 0.31 \,\mathrm{GeV}^{-1}$

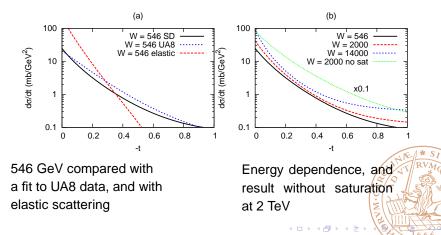
Summary

- In the eikonal approximation diffractive excitation is directly determined by the fluctuations in the scattering process
- ► The Lund Dipole Cascade Model can describe *pp* and *γ***p* total, elastic, and diffr. exc. to small and large masses
- The fluctuations in the cascade evolutions are large
- ► \Rightarrow Diffractive excitation is large in $\gamma^* p$ collisions
- In pp the fluctuations are large for the Born amplitudes, but strongly suppressed by unitarity above ~ 20 GeV
- Diffr. exc. in pp is an expanding ring in b-space
- Neglecting saturation, the dipole model reproduces the triple-Regge result for a bare pomeron, which is a simple pole with α(0) = 1.21 and α' = 0.2 (With saturation the cross section grows ~ s^{0.1} up to ~50 TeV)

Relation Good–Walker — Triple-Regge Summary Extra slides

Extra slides

t-dependence for single diffraction



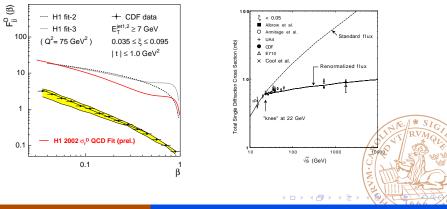
Relation Good–Walker — Triple-Regge[°] Summary Extra slides

Factorization breaking

Difference between pp and γ^*p

Cf. Goulianos' saturation of pomeron flux

pp scattering



Fluctuations, Saturation and Diffraction 21 Gösta Gustafson

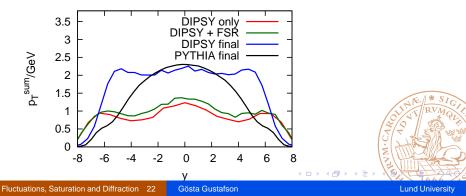
Final states

Remove branches which have not interacted. What is left corresponds to " k_{\perp} -changing emissions"

Add final state radiation and hadronization

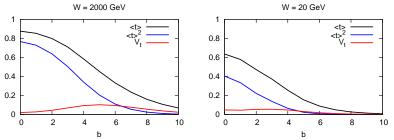
Very preliminary result:

W = 2000 GeV



Relation Good–Walker — Triple-Regge^{*} Summary Extra slides

Impact parameter profile



As observed earlier, diffractive excitation is a peripheral process

Circular ring expanding to larger radius at higher energy.

Extrapolate to smaller energy \Rightarrow

The hole closed for $W \sim 20$ GeV. Agrees with Goulianos estimate!

Diffractive final states

Coherence effects important for subtracting el. scatt.

$$egin{aligned} & d\sigma_n = c_n^2 \, (\sum_m d_m^2 \, t_{nm} - \langle t
angle \,)^2 \ & \langle t
angle = \sum_n \sum_m \, c_n^2 \, d_m^2 \, t_{nm} \end{aligned}$$

Fluctuations, Saturation and Diffraction 24 Gösta Gustafson

Toy model

(Abelian emissions; no saturation)

 $\Psi_{in} = \prod_{i} (\alpha_i + \beta_i) |\mathbf{0}\rangle$

parton *i* produced with prob. $|\beta_i|^2$, interacts with weight f_i

Diff. exc. states:

$$\begin{split} \Psi_j &= (-\beta_j + \alpha_j) \prod_{i \neq j} (\alpha_i + \beta_i) |0\rangle \\ d\sigma_{el} &\sim (\sum_i \beta_i^2 f_i)^2 \\ d\sigma_j &\sim \alpha_i^2 \beta_j^2 f_j^2 \end{split}$$

pp scattering

Fluctuations, Saturation and Diffraction 26 Gösta Gustafson