Transverse Λ polarization at high energy colliders

Daniël Boer KVI, University of Groningen

Outline

- Brief review of transverse Λ polarization in $p+p
 ightarrow \Lambda^{\uparrow} + X$
- Possible underlying mechanism in the intermediate to high p_T region: transverse momentum and spin dependence in the fragmentation process
- Suggestions for investigations at high energy colliders:
 - $p + p/\bar{p} \rightarrow \Lambda^{\uparrow} + \mathsf{jet} + X$ at midrapidity
 - $p + p/A \rightarrow \Lambda^{\uparrow} + X$ at forward rapidity
- Comments on high energy hadron collider data and the role of gluons

Transverse Λ polarization in unpolarized scattering

Large asymmetries have been observed in $p + p \rightarrow \Lambda^{\uparrow} + X$ G. Bunce *et al.*, PRL 36 (1976) 1113

Blue arrows indicate the direction of positive transverse (w.r.t. production plane) polarization P_{Λ} , in the four quadrants

For symmetry reasons $P_{\Lambda} = 0$ at midrapidity

Generic p p data - x_F and p_T dependence

 P_{Λ} turns out to be negative

For p_T above 1 GeV/c P_Λ becomes flat (measured up to $p_T \sim 4 \text{ GeV/c}$)

Generic pp data - \sqrt{s} (in)dependence

Comprehensive review of data by A.D. Panagiotou (Int.J.Mod.Phys.A 5 (1990) 1197)

Theoretical considerations

Most models give qualitative descriptions of the data for $p_T\,{\lesssim}\,1-2\,{\rm GeV}/c$

E.g. the DeGrand-Miettinen model PRD 23 (1981) 1227 & 24 (1981) 2419

 P_{Λ} stays large at least until the highest measured $p_T \sim 4~{\rm GeV}/c$

For large p_T perturbative QCD and collinear factorization should apply

pQCD conserves helicity, which leads to $P_{\Lambda} \sim \alpha_s m_q / \sqrt{\hat{s}}$ (= small) Kane, Pumplin & Repko, PRL 41 (1978) 1689

Collinear factorization

Consider for example the $qg \rightarrow qg$ subprocess

$$\sigma \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qg \rightarrow qg} \otimes D_{\Lambda/q}(z)$$

 $q(x_1) =$ quark density
 $g(x_2) =$ gluon density
 $D_{\Lambda/q}(z) = \Lambda$ fragmentation function

$$P_{\Lambda} \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qg \to qg} \otimes ?$$

No leading twist collinear fragmentation function exists for $q \to \Lambda^{\uparrow} X$ (due to symmetry reasons)

Would be necessarily higher twist, which leads to a fall-off as $1/p_T$

Noncollinear factorization

Dropping the requirement of *collinear* factorization, does allow for a solution

Mulders & Tangerman, NPB 461 (1996) 197

- Transverse momentum dependent: $D_{1T}^{\perp}(z, \boldsymbol{k}_T)$
- A nonperturbative $k_T imes S_T$ dependence in the fragmentation process
- Allowed by the symmetries (parity and time reversal)

 Λ polarization arises in the fragmentation of an *unpolarized* quark Hence, the suggested name "polarizing fragmentation function"

Polarizing fragmentation functions

 D_{1T}^{\perp} has been extracted from fixed target $p + p(Be) \rightarrow \Lambda^{\uparrow}(\bar{\Lambda}^{\uparrow}) + X$ data Anselmino, D.B., D'Alesio & Murgia, PRD 63 (2001) 054029

Unpolarized FF used include:

- De Florian, Stratmann, Vogelsang [DSV] (PRD 57 (1998) 5811)
- Indumathi, Mani, Rastogi [IMR] (PRD 58 (1998) 094014)

Both use e^+e^- data only and IMR includes SU(3) breaking

Resulting D_{1T}^{\perp} has opposite signs for u, d versus s quarks; the latter is larger This leads to cancellations in order that $P_{\bar{\Lambda}} \approx 0$

Extraction done under the restriction of $p_T > 1 \text{ GeV}/c$ to exclude the soft regime Whether this is sufficient to ensure the validity of the description is a matter of concern Despite that reasonable functions are obtained

High energy hadron collider data?

Validity of factorized description depends on a proper cross section description This requires data at higher energies and higher p_T

Available data is from experiments with $\sqrt{s} \leq 62$ GeV, requiring large K factors Why no Λ^{\uparrow} data from high energy hadron colliders, such as RHIC or Tevatron? Capabilities to measure Λ polarization via $\Lambda \rightarrow p \pi^{-}$ are usually restricted to the midrapidity region, where the degree of transverse polarization is very small $P_{\Lambda} = 0$ at $\eta = 0$ in p p collisions in cms

Alternative: consider jet+ Λ production: $p p \rightarrow (\Lambda^{\uparrow} \text{jet})$ jet X Such an asymmetry does not need to vanish at $\eta = 0$ D.B., Bomhof, Hwang & Mulders, PLB 659 (2008) 127; D.B., arXiv:0907.1610

Jet+ Λ production

Consider two jets, with momenta K_j and $K_{j'}$, such that $K_j \cdot K_{j'} = \mathcal{O}(\hat{s})$ The Λ is part of one of the two jets, and has momentum K_{Λ} and polarization S_{Λ} An asymmetry can arise that is proportional to:

 $\epsilon_{\mu\nu\alpha\beta}K^{\mu}_{j}K^{\nu}_{j'}K^{\alpha}_{\Lambda}S^{\beta}_{\Lambda}$

In principle, it is not power suppressed, nor needs to vanish at $\eta=0$

In the center of mass frame of the two jets the asymmetry is of the form:

$$SSA = \frac{d\sigma(+\boldsymbol{S}_{\Lambda}) - d\sigma(-\boldsymbol{S}_{\Lambda})}{d\sigma(+\boldsymbol{S}_{\Lambda}) + d\sigma(-\boldsymbol{S}_{\Lambda})} = \frac{\hat{\boldsymbol{K}}_{j} \cdot (\boldsymbol{K}_{\Lambda} \times \boldsymbol{S}_{\Lambda})}{z M_{\Lambda}} \frac{d\sigma_{T}}{d\sigma_{U}}$$

 $d\sigma_T/d\sigma_U$ depends on D_{1T}^{\perp}

Jet+ Λ production

The process $p p \rightarrow (\Lambda^{\uparrow} \text{jet})$ jet X can be studied at RHIC and LHC For instance, ALICE can measure Λ 's over a wide p_T range, in a typical yearly run at least up to 16 GeV/c

Rapidity coverage of ALICE: $-0.9 \le \eta \le +0.9$

For jet rapidities in this kinematic region, the cross section is dominated by gluon-gluon $(gg \rightarrow gg)$ scattering, *if* gluons fragmenting into Λ 's are as important as quarks This leads to

$$\frac{d\sigma_T}{d\sigma_U} \approx \frac{D_{1T}^{\perp g}(z, K_{\Lambda T}^2)}{D_1^g(z, K_{\Lambda T}^2)}$$

No model or fit for $D_{1T}^{\perp g}$ is available yet, so no predictions can be made in this case Fit of D_{1T}^{\perp} to $p \, p \to \Lambda^{\uparrow} X$ data not sensitive to $g \to \Lambda X$

Jet+ Λ production at the LHC

If it happens that $D_{1T}^{\perp g} \ll D_{1T}^{\perp q}$, then one finds for $\eta_{j'} \approx -\eta_j$ $(x \equiv x_1 \approx x_2)$

$$\frac{d\sigma_T}{d\sigma_U} \approx \frac{\sum_q f_1^q(x) D_{1T}^{\perp q}(z, K_{\Lambda T}^2)}{\sum_q f_1^q(x) (D_1^q(z, K_{\Lambda T}^2) + D_1^g(z, K_{\Lambda T}^2)) + f_1^g(x) D_1^g(z, K_{\Lambda T}^2)/0.8}$$

This includes also in the denominator the $qg \rightarrow qg$ subprocess

Will use extracted ratios for $D_{1T}^{\perp\,q}/D_1^q$ with DSV & IMR which have $D_1^g \ll D_1^q$

Expected to yield qualitative estimates only

Jet+ Λ production at the LHC

The asymmetry exceeds -1 for smaller $K_{T\Lambda}$ at large z, hence is overestimated Hardly any asymmetry at smaller z due to fit to low energy data Need not be realistic at high energies

Jet+ Λ production at the LHC

 D_{1T}^{\perp} extracted using SU(3) breaking unpolarized FFs [IMR] yields very different result Indumathi *et al.*, PRD 58 (1998) 094014

Asymmetry is very sensitive to the cancellation between u, d and s contributions Future jet+ Λ production data hopefully will allow more solid extraction of D_{1T}^{\perp}

Role of $g \to \Lambda X$

De Florian, Stratmann, Vogelsang [DSV] (PRD 57 (1998) 5811) $(e^+e^- \text{ data only})$ Albino, Kniehl, Kramer [AKK] (NPB 734 (2006) 50) AKK update [AKK08] (NPB 803 (2008) 42)

Role of $g \to \Lambda X$

Fits of D_1 to only $e^+e^- \to \Lambda X$ data not sensitive to $g \to \Lambda X$

Should we use the latest AKK08 then? Also problematic!

Λ fragmentation function problem

"a possible inconsistency between the pp and e^+e^- reaction data for $\Lambda/\overline{\Lambda}$ production" AKK, NPB 803 (2008) 42

Forward rapidity data

 Λ polarization is also very interesting in pA reactions at very high \sqrt{s} , large A and η In this kinematic regime of small x, saturation of the gluon density is expected

The saturation scale Q_s and even its evolution with x could be probed in this way D.B. & Dumitru, PLB 556 (2003) 33; D.B., Utermann & Wessels, PLB 671 (2009) 91

However, in the forward direction often protons cannot be identified, which hampers the measurement of Λ polarization

None of the existing data is in the saturation regime

Suggestion:

Use neutral decays $\Lambda \to n \pi^0$ (B.R. $\frac{1}{3}$) to measure Λ polarization at forward rapidities Cork *et al.*, PR 120 (1960) 1000; Olsen *et al.*, PRL 24 (1970) 843

Hadron production in the saturation regime

The cross section of forward hadron production in the (near-)saturation regime:

 $\mathsf{pdf} \otimes \mathsf{dipole\ cross\ section} \otimes \mathsf{FF}$

Dumitru & Jalilian-Marian, PRL 89 (2002) 022301

Since D_{1T}^{\perp} is k_T -odd, it essentially probes the derivative of the dipole cross section

At transverse momenta of $\mathcal{O}(Q_s)$ the dipole cross section changes much

This leads to a Q_s -dependent peak in the Λ polarization

First demonstrated for the McLerran-Venugopalan model, which has constant Q_s D.B. & Dumitru, PLB 556 (2003) 33

For an x-dependent Q_s it is a priori not clear whether this signature remains But various CGC models lead to same conclusion about peak of Λ polarization: Its x_F dependence is to very good approximation the x dependence of Q_s !

Λ polarization in $p+Pb \rightarrow \Lambda^{\uparrow} + X$ at $\sqrt{s} = 8.8~{\rm TeV}$

D.B., Utermann & Wessels, PLB 671 (2009) 91

Conclusions

- At medium to high $p_T,\ p\,p\to\Lambda^{\uparrow}\,X$ may be described using D_{1T}^{\perp}
- $D_{1T}^{\perp} \Rightarrow$ unsuppressed $K_j \cdot (K_{\Lambda} \times S_{\Lambda})$ asymmetry in $p p \rightarrow (\Lambda^{\uparrow} \text{jet})$ jet X at midrapidity
- Future jet+ Λ production data hopefully will allow more solid extraction of D_{1T}^{\perp} This can also clarify the role of gluons It may shed light on the inconsistency between p p and e^+e^- data
- The k_T -odd nature of D_{1T}^{\perp} can be of use to small-x physics
- x_F dependence of the peak of Λ polarization directly probes the x dependence of Q_s
- In principle possible at LHC (at RHIC the peak is likely at too low p_T)
- Λ polarization studies at high energy colliders could prove very interesting!