Higher-order predictions for large-x splitting functions and coefficient functions¹

Gary Soar (University of Liverpool)

Collaboration with A.Vogt (University of Liverpool) and, partly, with S.Moch (DESY) and J.Vermaseren (NIKHEF)

DIS2010, Florence, April 2010

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for F_2, F_{ϕ})

(F₂ , F_L) Physical Kernels

Leading Double Logarithms To All Orders

Summary & Outlook

 $^{1}\text{arXiv:0912.0369}$ NP B 832 (2010) 152-227 (G.S, Moch, Vermaseren, Vogt) and to appear (G.S, Vogt) $<\square \mathrel{\blacktriangleright} \triangleleft \mathrel{\equiv} \mathrel{\leftarrow} <footnote>$

Outline

- Introduction: Deep Inelastic Scattering in perturbative QCD
- Large-x double-log behaviour of splitting and coefficient functions
- Singlet physical evolution kernels: single-logarithmic enhancement
 - $(F_2, F_{\phi}): c_{2,i}^{(3)}, c_{\phi,i}^{(3)} \rightarrow \text{prediction of highest 3 logarithms of } P_{qg,gq}^{(3)}$
 - ► (F_2, F_L) : $P_{qg,gq}^{(3)} \rightarrow$ prediction of highest 3 logs of $c_{L,i}^{(3)}$
- Derivation of the leading double-logarithmic contributions to 'off-diagonal' splitting and coefficient functions to all orders

Summary & Outlook

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for F_2, F_{ϕ})

(F₂ , F_L) Physical Kernels

Leading Double Logarithms To All Orders

Summary & Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Deep Inelastic Scattering

 $\gamma^*(q)$

h(p) =

•

 \blacktriangleright Inclusive lepton-hadron DIS \rightarrow partonic content of hadrons.

Bjorken variable: $x = Q^2/(2p \cdot q)$

Parton momentum: $P = \xi p$

Resolution: $Q^2 = -q^2$

 $F_{a}(\xi, Q^{2}) = C_{a,i}\left(lpha_{s}(\mu^{2}, \mu^{2}/Q^{2})
ight) \otimes f_{i}(\xi, \mu^{2})$

 μ : renormalization/mass-fact. scale. \otimes : Mellin convolution $f_i(\eta, Q^2)$: momentum distribution functions for (anti-)quarks and gluons \rightarrow Generally not defined in terms of physical process

PDFs at different scales related by evolution equations

 $\frac{d}{d\ln\mu^2}f_i(\xi,\mu^2)=P_{ij}(\xi,\mu^2)\otimes f_j(\xi,\mu^2)$

P_{ij}: splitting function: perturbation series in the couplings

 $P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \alpha_s^4 P^{(3)} + \dots$

• Coefficient functions ($n_a = 0, 1$ for $F_{2/\phi}$ and F_L respectively)

$$C_{a} = \alpha_{s}^{n_{a}} \left[c_{a}^{(0)} + \alpha_{s} c_{a}^{(1)} + \alpha_{s}^{2} c_{a}^{(2)} + \alpha_{s}^{3} c_{a}^{(3)} + \dots \right]$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

(F₂ , F_L) Physical Kernels

_eading Double _ogarithms To All Orders

Large-x Logarithms in Splitting and Coefficient Functions

▶ In the modified minimal subtraction (\overline{MS}) scheme: $P_{qg,gg}^{(\ell)}$: terms up to $(1 - x)^{-1}$ $P_{qg,gg}^{(\ell)}$: terms up to $\ln^{2\ell}(1 - x)$ $c_{2,q/\phi,g}^{(\ell)}$: terms up to $(1 - x)^{-1}\ln^{2\ell-1}(1 - x)$ $c_{2,g/\phi,g}^{(\ell)}$: terms up to $\ln^{2\ell-1}(1 - x)$ $c_{L,g}^{(\ell)}$: terms up to $\ln^{2\ell}(1 - x)$ $c_{L,g}^{(\ell)}$: terms up to $(1 - x)\ln^{2\ell}(1 - x)$

 \rightarrow stable diagonal splitting functions at large-x

Everything else: double logarithmic enhancement at large-x

- Alternative approach:
 - Eliminate partons from description of structure function
 - \rightarrow dependence on Q^2 then given in terms of Physical Evolution Kernels
 - Preview: Kernels can be shown to only contain single logs

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

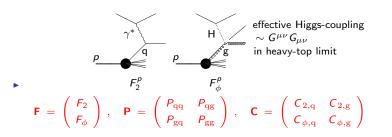
Singlet Physical Evolution Kernel for F_2, F_{ϕ})

(F₂ , F_L) Physical Kernels

_eading Double _ogarithms To All Orders

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

[Furmanski, Petronzio (82)]



Perform scheme transformation through transformation matrix Z with

 $Z_{ik} = \delta_{ik} + \sum_{\ell=1}^{\infty} a_s^{\ell} Z_{ik}^{(\ell)} , \quad a_s \equiv \frac{\alpha_s}{4\pi}$

• Results in transformed coefficient functions \tilde{C} and parton distributions \tilde{q}

$$F = C \cdot q = CZ^{-1} \cdot Zq = \widetilde{C} \cdot \widetilde{q}$$

 \rightarrow transformed splitting functions

$$\mathbf{P}' = \mathbf{P} + \left(\beta \frac{d\mathbf{Z}}{d\mathbf{a}_{s}} + [\mathbf{Z}, \mathbf{P}]\right) \mathbf{Z}^{-1}$$

• Choose Z = C: P'_{ij} are Physical Evolution Kernels, K_{ij}

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

(F₂ , F_L) Physical Kernels

Leading Double Logarithms To All Orders

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

Matrix evolution equation for singlet structure function

$$\frac{d}{d \ln Q^2} F = \mathbf{K} F \equiv \sum_{\ell=0}^{\infty} \mathbf{a}_s^{\ell+1} \begin{pmatrix} K_{22}^{(\ell)} & K_{2\phi}^{(\ell)} \\ K_{\phi 2}^{(\ell)} & K_{\phi \phi}^{(\ell)} \end{pmatrix} \cdot \begin{pmatrix} F_2 \\ F_{\phi} \end{pmatrix}$$

► Large-x behaviour at NLO, NNLO \rightarrow single logarithmic enhancement: $K_{22,\phi\phi}^{(\ell)} \sim (1-x)^{-1} \ln^{(\ell)}(1-x), K_{2\phi,\phi2}^{(\ell)} \sim (1-x)^0 \ln^{(\ell)}(1-x)$ Conjecture: persists to N^3LO at least (c.f. non-singlet (NS) case)

▶ → Prediction of $\ln^{6,5,4}(1-x)$ of $P_{qg,gq}^{(3)}$ (and $\ln^{5,4,3}(1-x)$ of $P_{\rho s,gg|_{C_r}}^{(3)}$)

• Example $((1 - x)^0$ part (for brevity), $C_{AF} = C_A - C_F$):

$$P_{qg}^{(3)}(x) = \ln^{6}(1-x) \cdot 0$$

+ $\ln^{5}(1-x) \Big[\frac{22}{27} C_{AF}^{3} n_{f} - \frac{14}{27} C_{AF}^{2} C_{F} n_{f} - \frac{4}{27} C_{AF}^{2} n_{f}^{2} \Big]$
+ $\ln^{4}(1-x) \Big[\Big(\frac{293}{27} - \frac{80}{9} \zeta_{2} \Big) C_{AF}^{3} n_{f} + \Big(\frac{4477}{162} - 8\zeta_{2} \Big) C_{AF}^{2} C_{F} n_{f} \Big]$
- $\frac{13}{81} C_{AF} C_{F}^{2} n_{f} - \frac{116}{81} C_{AF}^{2} n_{f}^{2} + \frac{17}{81} C_{AF} C_{F} n_{f}^{2} - \frac{4}{81} C_{AF} n_{f}^{3} \Big]$
+ $\mathcal{O} (\ln^{3}(1-x))$

 \rightarrow Extension to all orders in (1 - x): see arXiv:0912.0369

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

(F₂, F_L) Physical Kernels

_eading Double _ogarithms To All Orders

(F₂, F_L) Physical Kernels

[Catani(97), Blümlein, Ravindran and van Neerven(00)]

▶ Recall: For (F_2, F_{ϕ}) system, transformation matrix

$$\mathbf{Z}^{(\ell)}(\mathbf{N}) = \begin{pmatrix} C_{2,q} & C_{2,g} \\ C_{\phi,q} & C_{\phi,g} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sum_{\ell=1} \mathbf{a}_{\mathsf{s}}^{\ell} \begin{pmatrix} c_{2,q}^{(\ell)} & c_{2,g}^{(\ell)} \\ c_{\phi,q}^{(\ell)} & c_{\phi,g}^{(\ell)} \end{pmatrix}$$

▶ For (*F*₂, *F*_{*L*}) system, transformation matrix

$$\mathbf{Z}^{(\ell)}(\mathbf{N}) = \begin{pmatrix} C_{2,q} & C_{2,g} \\ \widehat{C}_{L,q} & \widehat{C}_{L,g} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & \widehat{c}_{L,g}^{(0)} \end{pmatrix} + \sum_{\ell=1} \mathbf{a}_{\mathbf{s}}^{\ell} \begin{pmatrix} c_{2,q}^{(\ell)} & c_{\ell,g}^{(\ell)} \\ \widehat{c}_{L,q}^{(\ell)} & \widehat{c}_{L,g}^{(\ell)} \end{pmatrix}$$

where $\widehat{C}_{L,i} = C_{L,i}/a_s c_{L,q}^{(0)}$, hence $\widehat{C}_{L,q}^{(k)} \sim \ln^k N$, $\widehat{C}_{L,g}^{(k)} \sim N^{-1} \ln^k N$. (Normalization differs from [BRvN(00)])

- Physical evolution kernels → single logarithmic enhancement to NNLO also!
- ► $P_{qg}^{(3)}$ predictions from (F_2, F_{ϕ}) + physical kernel single-log enhancement of $(F_2, F_L) \rightarrow \ln^{6,5,4}(1-x)$ predictions of 4-loop coefficient function $c_{L_1}^{(3)}$.
- Agrees with/extends NS treatment of [Moch, Vogt (09)] (C_F = 0 part only for C_{L,g})

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for F_2, F_{ϕ})

(F₂, F_L) Physical Kernels

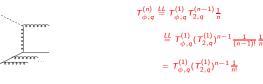
eading Double ogarithms To All Orders

Leading Double Logarithms To All Orders

- Single-log enhancement from cancellation of double-log quantities of MS splitting and coefficient functions → all-order relation for {P⁽ⁿ⁾, c⁽ⁿ⁾}
- Quantities extracted order by order in α_s from ε-expansion of unfactorized photon/Higgs-parton forward scattering amplitudes.
- ϵ^{ℓ} , $\ell < -1$: lower order terms. ϵ^{-1} : contains new split. function. ϵ^{0} : contains new coeff. function. ϵ^{ℓ} , $\ell > 0$: required for higher orders.
- ► LL terms in $T_{\phi,q}^{(n)}$ and $T_{2,g}^{(n)}$ at any power of ϵ : $T_{\phi,q}^{(n)}$: $L_{n,\ell}C_F(C_F^{n-1} + C_F^{n-2}C_A + ...C_A^{n-1})\epsilon^{-n+\ell}\frac{1}{N}\ln^{n+\ell+1}N$ $T_{2,g}^{(n)}$: $L_{n,\ell}n_F(C_F^{n-1} + C_F^{n-2}C_A + ...C_A^{n-1})\epsilon^{-n+\ell}\frac{1}{N}\ln^{n+\ell+1}N$

►

- Same $L_{n,\ell}$ for both cases \rightarrow can infer LL terms of $P_{qg}^{(n)}$, $P_{gq}^{(n)}$ and $C_{2,g}$, $C_{\phi,q}$ from just one of the colour factors!
- ▶ Consider $\alpha_s^{\mathsf{r}} C_F^{\mathsf{n}}$ (i.e. pure- C_F) contributions to $T_{\phi,q}$ in Mellin *N*-space \rightarrow used for extraction of P_{gq} and $C_{\phi,q}$.



$$\rightarrow \quad T_{\phi,q} \stackrel{LL}{=} \frac{T_{\phi,q}^{(1)}}{T_{2,q}^{(1)}} [e^{\alpha_s T_{2,q}^{(1)}} - 1] \quad (*)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

(F₂ , F_L) Physical Kernels

Leading Double Logarithms To All Orders

Leading Double Logarithms To All Orders

▶ $T_{\phi,q}^{(1)}$ and $T_{2,q}^{(1)}$ leading-log contributions known to ALL powers in ϵ .

$$T_{\phi,q}^{(1)}(x) \stackrel{lL}{=} -2C_F \frac{1}{\epsilon} (1-x)^{-\epsilon} \stackrel{M-trf}{\longrightarrow} -\frac{2}{N} C_F \frac{1}{\epsilon} e^{\epsilon \ln N}$$

$$T_{2,q}^{(1)}(x) \stackrel{lL}{=} -4C_F \frac{1}{\epsilon} (1-x)^{-1-\epsilon} + virt.corr. \stackrel{M-trf}{\longrightarrow} 4C_F \frac{1}{\epsilon^2} (e^{\epsilon \ln N} - 1)$$

- Through mass factorization, T = CZ, can calculate first 4 powers in ϵ of $T_{\phi,q}$ at all-orders in $\alpha_s \rightarrow$ assume (*) holds to all powers in ϵ .
- Mass Factorization $T_{\phi,q} = C_{\phi,q}Z_{qq} + C_{\phi,g}Z_{gq}$
- Elimination of all non-contributing terms to the LL simplifies problem:
 - $P_{qq,gg}^{(n)} \sim \ln N + ... \rightarrow \text{drop } P_{qq,gg}^{(n>0)}$
 - ▶ $P_{qg,gq}^{(n)} \sim 1/N \rightarrow$ only one off-diagonal splitting function per term
 - ▶ → all-order expression for double-log Z_n with $P = \left(\frac{d}{d \ln \mu^2} Z\right) Z^{-1}$
- ► → Extract $P_{gq}^{(n)}$, $c_{\phi,q}^{(n)}$ and $\epsilon^{\ell>0}$ terms order by order: $P_{gq}^{(2n+1)} = 0$ for $n \ge 1$, $P_{gq}^{(2n)} = \tilde{L}_n C_F (C_A - C_F)^{2n}$, $C_{\phi,q} \ne 0 \forall n$
- ▶ Results explain 'mysterious' accidental disappearance of $\ln^6(1-x)$ in $P_{qg}^{(3)}$ → occurs at every odd power. $\tilde{L}_4 = -4/135$, $\tilde{L}_6 = 16/42525$, ...

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for F_2, F_{ϕ})

(F₂, F_L) Physical Kernels

Leading Double Logarithms To All Orders

The (F_2, F_{ϕ}) Physical Kernel Revisited

• Physical kernel given by $\mathbf{K} = \mathbf{Z}\mathbf{P}\mathbf{Z}^{-1}$ where

$$\mathbf{Z}_{\mathbf{n}} = \begin{pmatrix} C_{2,q}^{(n)} & C_{2,g}^{(n)} \\ C_{\phi,q}^{(n)} & C_{\phi,g}^{(n)} \end{pmatrix}, \quad \mathbf{Z}^{-1} = \frac{1}{\mathbf{Z}_{qq}\mathbf{Z}_{gg}} \begin{pmatrix} Z_{gg} & -Z_{qg} \\ -Z_{gq} & Z_{qq} \end{pmatrix}$$

$$\mathbf{P}^{(0)} = \begin{pmatrix} P_{qq}^{(0)} & P_{qg}^{(0)} \\ P_{gq}^{(0)} & P_{gg}^{(0)} \end{pmatrix}, \quad \mathbf{P}^{(\mathbf{n})} = \begin{pmatrix} 0 & P_{qg}^{(n)} \\ P_{gq}^{(n)} & 0 \end{pmatrix}$$

Leading double logs of off-diagonal physical kernels vanish for

$$\frac{1}{C_{\phi,g}} \left[C_{2,q} P_{qg} + C_{2,g} (P_{gg}^{(0)} - P_{qq}^{(0)}) \right] = 0$$

$$\frac{1}{C_{2,q}} \left[C_{\phi,g} P_{gq} + C_{\phi,q} (P_{qq}^{(0)} - P_{gg}^{(0)}) \right] = 0 \quad (*)$$

▶ Splitting and coefficient functions extracted from $T_{\phi,q}$, $T_{2,g}$ (unrelated to physical kernel): (*) holds to all orders in α_s → first step to proof of physical kernel single-log enhancement that was conjectured.

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for (F_2, F_{ϕ})

(F₂, F_L) Physical Kernels

Leading Double Logarithms To All Orders

Summary & Outlook

- \overline{MS} splitting and coefficient functions: double-log enhanced (except $P_{qq,gg}$)
- Singlet physical evolution kernels for (F₂, F_φ) and (F₂, F_L): single-log behaviour (proven to NNLO and conjectured to all orders in α_s)
- ▶ Prediction for $\ln^{6,5,4}(1-x)$ in N^3LO splitting functions $P_{qg,gq}^{(3)}$ (from (F_2, F_{ϕ})) and coefficient functions $c_{L,i}^{(3)}$ (from (F_2, F_L))
- Alone not sufficient for phenomenology, but important for future approximations based on fixed-N moments (c.f. van Neerven, Vogt (00), first N³LO moment calculation: Baikov, Chetyrkin (06))
- Iterative structure of leading double-log contributions uncovered for T_{φ,q} and T_{2,g} → all-order coefficients of P_{qg,gq} and C_{2,g}, C_{φ,q} → Confirms physical kernel conjecture
- At least partial extension to next one (or two?) logarithms should be possible → work in progress.

Outline

Gary Soar (University of Liverpool)

Deep Inelastic Scattering

Large-x Logarithms in Splitting and Coefficient Functions

Singlet Physical Evolution Kernel for F_2, F_ϕ)

F₂ , F_L) Physical Kernels

eading Double ogarithms To All Orders