KLOE measurement of $\sigma(e^+e^-\to \pi^+\pi^-(\gamma))$ with Initial State Radiation and the $\pi\pi$ contribution to the muon anomaly

Graziano Venanzoni

(for the KLOE collaboration)

Laboratori Nazionali di Frascati

CERN, 23 March 2010

Outlook

- Hadronic contribution to (g-2)_μ and ISR measurement ("Radiative Return")
- KLOE measurements of $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$:
 - Small (photon) angle measurements (KLOE05, KLOE08)
 - Large (photon) angle measurement (KLOE09) New!
- Evaluation of $a_{\mu}^{\ \pi\pi}$ and comparison with CMD-2/SND/BaBar
- New measurement well advanced:
 - Extraction of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ by $\mu\mu\gamma$ normalization
- Test of Final State radiation (FSR) by Forward-Backward asymmetry in e⁺e⁻ →π⁺π⁻γ
- Conclusion & Outlook

Muon anomaly

$$a_{\mu} = \frac{(g_{\mu} - 2)}{2}$$

- Long established discrepancy (>3σ) between SM prediction and BNL E821 exp.
- •Theoretical error $\delta a_{\mu}^{~SM}$ (~6x10⁻¹⁰) dominated by HLO VP (4÷5x10⁻¹⁰) and HLbL ([2.5÷4]x10⁻¹⁰)
- •Experimental error $\delta a_{\mu}^{EXP} \sim 6 \times 10^{-10} (E821)$. Plan to reduce it to 1.5 10^{-10} by the new g-2 experiment @FNAL (and also by new project @ J-PARC)

 a_{μ}^{HLO} = (690.9±**4.4**)10⁻¹⁰ [Eidelman, TAU08] $\delta a_{\mu}^{HLO} \sim 0.7\%$

 a_{μ}^{HLbL} =(10.5±2.6)10⁻¹⁰ μ [Prades, de Rafael & A. Vainshstein 08] (11 ±4)10⁻¹⁰ (Jegerlehner, Nyffler)

 a_{μ}^{SM} compared to BNL world av.

a_uHLO:

L.O. Hadronic contribution to a₁₁ can be estimated by means of a dispersion integral:

1 / s² makes low energy contributions especially important:

$$e^+e^- \rightarrow \pi^+\pi^-$$

in the range < 1 GeV
contributes to 70%!

- K(s) = analytic kernel-function
- above sufficiently high energy value, typically 2...5 GeV, use pQCD

Input:

- a) hadronic electron-positron cross section data (G.dR 69, E.J.95, A.D.H.'97,....))
- b) hadronic τ- decays, which can be used with the help of the CVC-theorem and an isospin rotation (plus isospin breaking corrections)

Dispersion Integral:

Contribution of different energy regions to the dispersion integral and the error to a had

Experimental errors on σ^{had} translate into theoretical uncertainty of a_{μ}^{had} ! \rightarrow Needs precision measurements!

$$\delta a_{\mu}^{\text{ exp}} \rightarrow 1.5 \ 10^{-10} = 0.2\% \ \text{on } a_{\mu}^{\text{ HLO}}$$
 New g-2 exp.

e⁺e⁻ data: current and future/activities

Cross section data:

At low energies (< 2 GeV) only measurements of exclusive channels, two approaches:

Energy scan (CMD2, SND):

- energy of colliding beams is changed to the desired value
- "direct" measurement of cross sections
- needs dedicated accelerator/physics program
- needs to measure luminosity and beam energy for every data point

Radiative return (KLOE, BABAR, BELLE):

- runs at fixed-energy machines (meson factories)
- use initial state radiation process to access lower lying energies or resonances
- data come as by-product of standard physics program
- requires precise theoretical calculation of the radiator function
- luminosity and beam energy enter only once for all energy points
- needs larger integrated luminosity

Pion form factor @ Novosibirsk (with energy scan)

Good agreement between the two spectra

ISR: Initial State Radiation

Particle factories (DA Φ NE, PEP-II, KEK-B) can measure hadronic cross sections as a function of the hadronic c.m. energy using initial state radiation (radiative return to energies below the collider energy \sqrt{s}).

The emission of a hard γ in the bremsstrahlung process in the initial state reduces the energy available to produce the hadronic system in the e⁺e⁻ collision.

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr})

→ EVA + PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^-\to\pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 \Rightarrow ~3 σ discrepancy btw a_{μ}^{SM} and a_{μ}^{exp}

DAPNE: A Ф-Factory

 e^+e^- - collider with \sqrt{s} = m_{Φ} \approx 1.0195 GeV

Integrated Luminosity

Peak Luminosity L_{peak}= 1.5 • 10³²cm⁻²s⁻¹

KLOE05 measurement (PLB606(2005)12) was based on 140pb⁻¹ of 2001 data!

KLOE08 measurement (PLB670(2009)285) was based on 240pb⁻¹ from 2002 data!

2006:

- Energy scan (4 points around m_Φ-peak)
- 240 pb⁻¹ at \sqrt{s} = 1000 MeV (off-peak data)

Our new measurement (KLOE09) is based on 233 pb⁻¹ of 2006 data (different event selection)

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90° tracks) $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$ *Excellent momentum*

resolution

KLOE Detector

Electromagnetic Calorimeter

Extracting $\sigma_{\pi\pi}$ and $|F_{\pi}|^2$ from $\pi\pi\gamma$ events

a) Via absolute Normalisation to VLAB Luminosity (as in 2005 analysis):

1)
$$\frac{d\sigma_{_{\pi\pi\gamma(\gamma)}}^{obs}}{dM_{_{\pi\pi}}^{2}} = \frac{\Delta N_{\rm Obs} - \Delta N_{\rm Bkg}}{\Delta M_{_{\pi\pi}}^{2}} \cdot \frac{1}{\varepsilon_{\rm Sel}} \cdot \frac{1}{\int L dt}$$

 $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. luminosity*:

$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$

Obtain $\sigma_{\pi\pi}$ from (ISR) - radiative cross section $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ via theoretical radiator function H(s):

$$|\mathbf{F}_{\pi}|^2 = \frac{3s}{\pi\alpha^2\beta_{\pi}^3}\sigma_{\pi\pi}(s)$$

Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \to \pi^+\pi^-)$

b) Via bin-by-bin Normalisation to rad. Muon events (analysis is in a well advanced phase, see later)

Radiative Corrections

Radiator-Function $H(s,s_{\pi})$ (ISR):

- ISR-Process calculated at NLO-level PHOKHARA generator

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003)

Precision: 0.5%

$$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times \mathsf{H}(s,s_{\pi})$$

Radiative Corrections:

- i) Bare Cross Section divide by Vacuum Polarisation $\delta(s) = (\alpha(s)/\alpha(0))^2$
 - → from F. Jegerlehner
- ii) FSR

Cross section $\sigma_{\pi\pi}$ must be incl. for FSR for use in the dispersion integral of a_{μ}

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the mapping $s_{\pi} \rightarrow s_{\gamma*}$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

Measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ with photon emitted at Small Angle ("SA Analysis,,)

Event Selection (KLOE08)

- a) 2 tracks with 50° < θ_{track} < 130°
- b) small angle (not detected) γ ($\theta_{\pi\pi}$ < 15° or > 165°)
 - √ high statistics for ISR
 - ✓ low relative FSR contribution
 - $_{\star 10^{\ 2}}$ \checkmark suppressed $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ wrt the signal

statistics: 240pb⁻¹ of 2002 data

3.1 Mill. Events between 0.35 and 0.95 GeV²

Event Selection

Experimental challenge: control backgrounds from

$$-\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$-e^+e^- \rightarrow e^+e^- \gamma$$

$$-e^+e^- \rightarrow \mu^+\mu^- \gamma$$
,

removed using kinematical cuts in $trackmass\ M_{Trk}$ - $M_{\pi\pi}^{2}$ plane

 $M_{\textit{Trk}}$: defined by 4-momentum conservation assuming 2 charged particle (of same mass) and one γ in the final state

$$\left| \left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2} \right)^2 - (p_1 + p_2)^2 = 0 \right|$$

To further clean the samples from radiative Bhabha events, we use a particle ID estimator (PID) for each charged track based on Calorimeter Information and Time-of-Flight.

Background:

Main backgrounds estimated from MC shapes fitted to data distribution in M_{Trk}

(ππγ/μμγ, πππ, eeγ)

$$0.84 < M_{min}^{2} < 0.86 \text{ GeV}^{2} \chi^{2}/\text{ndof} = 179/258$$

Tot bckg (μμγ, πππ and eeγ) contribution

Excellent agreement on M_{TRK} distribution between data and MC

Tracking efficiencies:

Two control samples

$\pi^+\pi^-\pi^0$

- a tagging track recognized as a pion by PID, extrapolating back to the IP, which satisfies the trigger
- 2 prompt clusters not associated to the tagging track with E>50 MeV and distant each other 60 cm
- 3) A constraint on the photon energy and time to further clean the sample, and improve missing momentum and energy

$\pi^+\pi^-\gamma$

- 1) As for $\pi^+\pi^-\pi^0$ sample
- 1 prompt clusters not associated to the tagging track with E>50 MeV
- 3) The tagging track must have p > 460 MeV (to reject $\pi^+\pi^-\pi^0$ events), the candidate track must have mass (built from 4 momentum conservation) M_{miss} > 120 MeV and NN < 0.3, to suppress $\mu^+\mu^-\gamma$ events

NN output

Data/MC corrections from $\pi^+\pi^-\pi^0$ and $\pi^+\pi^-\gamma$

When "weighted" for the $\pi\pi\gamma$ event distribution the two methods gives 0.3% fractional difference in $M^2_{\pi\pi}$ which is the systematic error

π/e PID and TCA efficiencies

π⁺π⁻γ sample

- Two tracks satisting ππγ
 "tracking" acceptance selection
- a tagging track recognized as a pion by PID, extrapolating back to the IP, which satisfies the trigger
- 3) Look for a cluster with PID>0 associated to the *candidate* track in slices of θ,p

Efficiency ~1

data/MC correction =1 at R=90 cm

the systematic error is given varying the association radius, the effect on the correction data/MC is negligible

Acceptance

 $< 0.37 \text{ GeV}^2$

 $0.35 < M_{\pi\pi}^{-2}$

We study the impact of enlarging/reducing the fiducial volume on the geometrical acceptance in slices of $M^2_{\pi\pi}$

$$\frac{N_{\rm MC}(\theta_{\pi\pi}<\theta_{\rm cut})}{N_{\rm MC}(\theta_{\pi\pi}<15^\circ)} - \frac{N_{\rm data}(\theta_{\pi\pi}<\theta_{\rm cut})}{N_{\rm data}(\theta_{\pi\pi}<15^\circ)}$$

the spectrum variation is linear as a function of the cut, so the excursion at \pm 1 degree is taken as systematic error

$M_{\pi\pi}^2$ range (GeV^2)	Systematic error (%)
$0.35 \le M_{\pi\pi}^2 < 0.39$	0.6
$0.39 \le M_{\pi\pi}^2 < 0.43$	0.5
$0.43 \le M_{\pi\pi}^2 < 0.45$	0.4
$0.45 \le M_{\pi\pi}^2 < 0.49$	0.3
$0.49 \le M_{\pi\pi}^2 < 0.51$	0.2
$0.51 \le M_{\pi\pi}^2 < 0.64$	0.1
$0.64 \le M_{\pi\pi}^2 < 0.95$	-

 $\theta_{\pi\pi}$ is angle of the missing photon

Unfolding

Our bin width (0.01 GeV² is ~ 5 $\delta M_{\pi\pi}^2$) \Rightarrow Resolution Matrix almost diagonal!

- We use Bayesan approach

G. D'Agostini, Nucl. Instrum. Meth. A 362 (1995) 487

- method based on Bayes' theorem
 - no matrix inversion needed
 - can be applied to multidimensional problems
 - iterative algorithm; can start with a uniform "true", normalized distribution distribution

Bayes formula: $P(C_i|E_j) = \frac{P(E_j|C_i)P(C_i)}{\sum_{i=1}^{n_c} P(E_i|C_i)P(C_i)}$

• "if we observe a single event "(effect E_i)", the probability that it has been due to the i-th cause "(C)," is proportional to the probability of the cause times probability of the cause to produce the effect"

- We compare the result with the simple matrix procedure. There is a difference only around ρ - ω region

İ	$M_{\pi\pi}^2 \; (\mathrm{GeV^2})$	0.58	0.59	0.6	0.61	0.62
	$\delta_{unf}(\%)$	0.4	0.3	2.1	4.0	0.4

- Very small effect for KLOE; systematic error negligible on a_u!

Luminosity:

KLOE measures L with Bhabha scattering

 $55^{\circ} < \theta < 125^{\circ}$ acollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) **Eur.Phys.J.C47:589-596,2006**

generator used for $\sigma_{e\!f\!f}$ BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB758 (2006) 22

new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL 0.1 % th \oplus 0.3% exp = 0.3%		

Luminosity:

KLOE measures L with Bhabha scattering

$$55^{\circ} < \theta < 125^{\circ}$$
acollinearity $< 9^{\circ}$

$$p \ge 400 \text{ MeV}$$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

KLOE result (KLOE08)

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
π/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√ s dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on a_{μ} = 0.6 %

 $\sigma_{\pi\pi}$, undressed from VP, inclusive for FSR as function of $(M^0_{\pi\pi})^2$

$a_{\mu}^{\pi\pi}$: KLOE vs CMD-2/SND

KLOE result in agreement with CMD2 and SND

Comparison with CMD2/SND

▲ CMD

8.0

only statistical errors are shown

0.9 M² (GeV²) band: KLOE error data points: CMD2/SND experiments

0.6

0.7

-0.04 -0.06 -0.08

0.3

0.4

0.5

CMD-2 and SND data have been averaged over width of KLOE bin (0.01 GeV²)

$a_{\mu} = (g_{\mu} - 2)/2$:

Theoretical predictions compared to the BNL result (in 2008):

Measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ with photon emitted at Large Angle ("LA Analysis,,)

New measurement based on 2006 data taken at \sqrt{s} =1.0 GeV, 20 MeV below the ϕ -peak (different selection!)

Results presented at PHIPSI09 Conference (Beijing, Oct 2009); paper in preparation

Event Selection

2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles $50^{\circ} < \theta_{v} < 130^{\circ}$

- √ independent complementary analysis
- √ threshold region (2m_x)² accessible
- $\checkmark \gamma_{ISR}$ photon detected (4-momentum constraints)
- √ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- √ irreducible background from ϕ decays $(\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma)$

At least 1 photon with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ and E_v > 20 MeV → photon detected

Threshold region non-trivial

due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown)

Event Selection

2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles $50^{\circ} < \theta_{y} < 130^{\circ}$

- √ independent complementary analysis
- √ threshold region (2m_x)² accessible
- √ γ_{ISR} photon detected (4-momentum constraints)
- √ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- √ irreducible background from ϕ decays $(\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma)$

Use data sample taken at √s≅1000 MeV, 20 MeV below the φ-peak

Event selection

 Experimental challenge: Fight background from

$$- e^{+}e^{-} \rightarrow \mu^{+}\mu^{-} \gamma,$$

$$- e^{+}e^{-} \rightarrow e^{+}e^{-} \gamma$$

$$- \phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

separated by means of kinematical cuts in $trackmass\ M_{Trk}$ and the angle Ω between the photon and the missing momentum

$$\vec{p}_{\text{miss}} = -(\vec{p}_+ + \vec{p}_-)$$

To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used.

New KLOE result (KLOE09)

Table of systematic errors on $\Delta a_{..}^{\pi\pi}(0.1-0.85 \text{ GeV}^2)$:

	μ ν
Reconstruction Filter	< 0.1%
Background	0.5%
$f_0 + \rho \pi$	0.4%
Omega	0.2%
Trackmass	0.5%
π/e-ID and TCA	< 0.1%
Tracking	0.3%
Trigger	0.2%
Acceptance	0.4%
Unfolding	negligible
Software Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $\Delta a_{\mu} = 1.0 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	< 0.1%

theoretical fractional error on $\Delta a_{\mu} = 0.6 \%$

Disp. Integral:

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

$$\Delta a_{\mu}^{\pi\pi}$$
(0.1-0.85 GeV²) = (478.5 ± 2.0_{stat}±4.8_{sys} ±2.9_{theo}) · 10⁻¹⁰

0.6% 1.0% 0.4%

Comparison of results: KLOE09 vs KLOE08

KLOE08 result compared to KLOE09:

Fractional difference:

band: KLOE09 error

Excellent agreement with KLOE08, expecially above 0.5 GeV²

Combination of the two measurements in progress

Comparison of results: KLOE09 vs CMD-2/SND

CMD and SND results compared to KLOE09:

Comparison of results: KLOE09 vs CMD-2/SND

CMD and SND results compared to KLOE09: Fractional difference

band: KLOE09 error

Below the ρ peak good agreement with CMD-2/SND.

Above the ρ peak KLOE09 slightly lower (as KLOE08)

Comparison of results: KLOE09 vs BaBar

BaBar results compared to KLOE09: Fractional difference

band: KLOE09 error

Agreement within errors below 0.6 GeV; BaBar higher by 2-3% above

$\Delta a_{\mu}^{\pi\pi}$ for different exp.:

 $\Delta a_{\mu}^{\pi\pi} (0.35\text{-}0.85\text{GeV}^2)$:

KLOE08 (small angle)

KLOE09 (large angle)

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

$$a_{\mu}^{\pi\pi}$$
 = (379.6 ± 0.4_{stat}±2.4_{sys} ±2.2_{theo}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.1_{\text{theo}}) \cdot 10^{-10}$$

$\Delta a_{\mu}^{\pi\pi}$ for different exp.:

 $\Delta a_{\mu}^{\pi\pi}$ (0.35-0.85GeV²):

KLOE08 (small angle)

KLOE09 (large angle)

 $\Delta a_{\mu}^{\pi\pi}$ (0.152-0.270 GeV²):

KLOE09 (large angle)

CMD-2

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

$$a_{\mu}^{\pi\pi}$$
 = (379.6 ± 0.4_{stat}±2.4_{sys} ±2.2_{theo}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.1_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{stat} \pm 1.2_{sys} \pm 0.4_{theo}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (46.2 \pm 1.0_{stat} \pm 0.3_{sys}) \cdot 10^{-10}$$

$\Delta a_{\mu}^{\pi\pi}$ for different exp.:

 $\Delta a_{\mu}^{\pi\pi}$ (0.35-0.85GeV²):

KLOE08 (small angle)

KLOE09 (large angle)

 $\Delta a_{\mu}^{\pi\pi}$ (0.152-0.270 GeV²):

KLOE09 (large angle)

CMD-2

 $\Delta a_{\mu}^{\pi\pi}$ (0.397-0.918 GeV²):

KLOE08 (small angle)

CMD-2

SND

BaBar

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

$$a_{\mu}^{\pi\pi}$$
 = (379.6 ± 0.4_{stat}±2.4_{sys} ±2.2_{theo}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.1_{\text{theo}}) \cdot 10^{-10}$$

$$0.2\% \quad 0.6\% \quad 0.6\%$$

$$a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{stat} \pm 1.2_{sys} \pm 0.4_{theo}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (46.2 \pm 1.0_{stat} \pm 0.3_{sys}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (356.7 \pm 0.4_{stat} \pm 3.1_{sys}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi} = (361.5 \pm 1.7_{stat} \pm 2.9_{sys}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi}$$
 = (361.0 ± 2.0_{stat}±4.7_{sys}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi}$$
 = (365.2 ± 1.9_{stat}±1.9_{sys}) · 10⁻¹⁰

$a_{\mu} = (g_{\mu} - 2)/2$:

Theoretical predictions compared to the BNL result (2009)

- ■The latest inclusion of all e⁺e⁻ data (DHMYZ09) gives a discrepancy btw a_μSM and a_μ^{EXP} of 3.2σ
- ■Remaining differences on $σ_{ππ}$ btw different experiments (mainly KLOE/BaBar) to be clarified [$Δa_μ$ EXP-SM =2.4÷3.7σ] Davier
- ■(Reduced) discrepancy with τ data (new I. corr.,ee,τ data)
 [a_{||}ee Δa_{||}τ =1.4σ]

KLOE09 is not yet in.

ISR: KLOE vs BaBar 2π

KLOE:

- The photon is "soft" (detected or not)
- No Kinematic fit
- Bin of 0.01 GeV² (~8 MeV at ρ peak) >> $\delta M_{\pi\pi}^2 \sim 2 \ 10^{-3} \ GeV^2$
- \Rightarrow Unfolding only relevant at low $M_{\pi\pi}^{2}$ (up to 4%) and at ρ-ω cusp,
- •Negligible contribution of LO FSR, and <2% contribution of NLO FSR($1\gamma_{ISR}+1\gamma_{FSR}$) only at low $M_{\pi\pi}^2$
- •Normalize to **Luminosity** (=Bhabha)
- Use **Phokhara** for acceptance, radiator and additional-photon effects

BaBar:

- The photon is "hard" and detected
- Kinematic fit to improve resolution
- Bin of 2 MeV in the region 0.5-1 GeV
- ⇒ Larger effects on the unfolding
- Negligible contribution of LO FSR, % contribution of NLO FSR($1\gamma_{ISR}+1\gamma_{FSR}$)
- Normalize to μμγ
- Interplay btw **Phokhara** and **AfkQED** to estimate additional-photon effects

Different selections and use of theoretical ingredients (R.C., Luminosity, Radiator). Additional cross checks are possible (and needed)

KLOE Measurement of $\sigma(e^+e^-\to \pi^+\pi^-(\gamma))$ by $\pi\pi\gamma/\mu\mu\gamma$ ratio

Analysis in a well advanced phase

$\sigma_{\pi\pi}$ measurement from π/μ

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion over muon yields (instead of using absolute normalization with Bhabhas).

$$\left|F_{\pi}(s')\right|^{2} \approx \frac{4\left(1+2m_{\mu}^{2}/s'\right)\beta_{\mu}}{\beta_{\pi}^{3}} \quad \frac{d\sigma_{\pi\pi\gamma}/ds'}{d\sigma_{\mu\mu\gamma}/ds'}$$

$$\begin{array}{c|c} & & \\$$

Many radiative corrections drop out:

- radiator function
- int. luminosity from Bhabhas
- Vacuum polarization

Separation btw $\pi\pi\gamma$ and $\mu\mu\gamma$ using M_{TRK}

- *muons*: $M_{Trk} < 120 \, MeV$
- pions : $M_{Trk} > 130 \, MeV$

Very important control of π/μ separation in the ρ region! $(\sigma_{\pi\pi}>>\sigma_{\mu\nu})$

π/μ : Status of the Analysis

□ 240 pb⁻¹ of 2002 data sample (the same used in KLOE08 analysis): 0.87 Million $\mu\mu\gamma$ events expected (compared to 3.1 Million for $\pi\pi\gamma$) □A lot of work has been done to achieve a control of ~1% in the muon selection, especially in the ρ region where $\pi/\mu \sim 10$ (see later) □We have achieved an excellent Data/MC agreement for muons in many kinematic variables (as we did for pions) ☐ Most of efficiencies for muons have been done and are ~100% \Box We have not yet performed the absolute ratio $\mu\mu\gamma_{DATA}/\mu\mu\gamma_{MC}$ (test of QED) to check Radiator, Luminosity, FSR, etc...

Results are expected for Summer conferences (if everything goes smoothly)

Example of data/MC comparison for $\mu\mu\gamma$ and $\pi\pi\gamma$: momentum components of μ and π

Example of $\mu\mu\gamma$ selection via M_{TRK}

Test of Final State Radiation model by measurement of the Forward-Backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-\gamma$ process

Forward-backward asymmetry:

In the case of a non-vanishing FSR contribution, the interference term between ISR and FSR is odd under exchange $\pi^+ \leftrightarrow \pi^-$. This gives rise to a non-vanishing asymmetry:

Binner, Kühn, Melnikov, Phys. Lett. B 459, 1999

Forward-backward asymmetry:

$$A = \frac{N(\theta^{+} > 90^{o}) - N(\theta^{+} < 90^{o})}{N(\theta^{+} > 90^{o}) + N(\theta^{+} < 90^{o})}$$

Ideal tool to test the validity of models used in Monte Carlo to describe the pionic final state radiation (point-like pion assumption, $R_{\chi}T$, etc.)

In a similar way like FSR, radiative decays of the ϕ into scalar mesons decaying to $\pi^+\pi^-$ also contribute to the asymmetry.

Czyz, Grzelinska, Kühn, hep-ph/0412239

Forward-backward asymmetry:

PHOKHARA-MC modified by O. Shekhovtsova using Kaon-Loop-Model used in KLOE analysis of $\pi^0\pi^0\gamma$ final state (reference)

Conclusions

- □ KLOE has performed the first precision measurement of $\sigma_{\pi\pi}$ in the region 0.35 0.95 GeV² with ISR → 1.3% systematic error (KLOE05, *PLB 606, 12 (2005)*)
 - discrepancy between a_u^{SM} and BNL experiment (~3 σ)
- □KLOE has presented a new measurement in 2008 (KLOE08, *Phys. Lett. B* 670, 285 (2009)) with a different data sample using the same selection of KLOE05 (photon at small angle) \rightarrow 0.9% systematic error
 - KLOE08 confirms the **discrepancy** of ~3 σ between a_u^{SM} and a_u^{EXP}
 - •KLOE08 $a_{\mu}^{\pi\pi}$ agrees with recent results from CMD2 and SND experiments. Reasonable agreement on $\sigma_{\pi\pi}$ shapes
- □KLOE has presented a new measurement of $\sigma_{\pi\pi}$ in 2009 (KLOE09) in the range 0.1- 0.85 GeV² using data taken at 1.0 GeV (20 MeV below the ϕ –peak), with a different selection of KLOE08 → 1.0% systematic error
 - Very good agreement with KLOE08 in the overlapping region (0.35-0.85 GeV²). Combination of the two measurements in progress
 - Agreement within errors with BaBar below 0.6 GeV; BaBar lies higher (2-3%) above

Outlook

- \Box Measurement of $\sigma_{\pi\pi}$ from $\pi\pi\gamma/\mu\mu\gamma$ ratio (as done by BaBar) well advanced.
 - •Comparison of $\mu\mu\gamma_{DATA}/\mu\mu\gamma_{MC}$ will provide a consistency test for Radiatior, Luminosity, FSR etc...
 - •Results are expected for Summer conferences
- ☐ Check of FSR by Forward-Backward asymmetry (in progress)
- □Still about 1.5 fb⁻¹ of KLOE from 2004/2005 data to be analyzed (3 times the statistics used up to now)
- Uvery important for a_μ also the region between 1 and 2 GeV. Already a lot has been done from BaBar and Belle with ISR, and more will come also from BES-III. To reach the ultimate precision of 1% projects like VEPP2000 and DAFNE-2 (DAFNE upgraded in energy) will be essential.

Stay Tuned!

SPARE SLIDES

Unfolding: KLOE vs BaBar 2π

Essentially no effect for KLOE

Spectra after SMA selection:

The spectra of selected events for the small angle analysis from 242.62 pb⁻¹ of data taken in 2002:

x 10 ²

$a_{\mu}^{\pi\pi}$ from KLOE:

All results are in good agreement. New result has 30% better accuracy

Correcting for γ_{FSR} energy:

Go from
$$M^2_{\pi\pi} \rightarrow s_{\gamma*}$$

The presence of γ_{FSR} results in a shift of the measured quantity $M^2_{~\pi\pi}$ towards lower

values:

$$M_{\pi\pi}^2 < S_{\gamma*}$$

Use special version of PHOKHARA which allows to determine whether photon comes from initial or final state \rightarrow build matrix which relates $M^2_{\pi\pi}$ to $M^2_{\gamma*}$.

ISR only:
$$s_{\gamma *} = M^2_{\pi\pi}$$

FSR photon present: $s_{\gamma*} = M^2_{\pi\pi\gamma_{(FSR)}}$

Trigger

■The event is **triggered** by the (pion) tracks only which deposit E>50 MeV in 2 sectors of the calorimeter

- ■trigger efficiency evaluated on data by 2 independent methods.
- ■Error is the fractional difference of the 2 methods: 0.1%

■The main source (hardware veto of cosmic rays) of inefficiency in the published result has been replaced by an online filter (L3)

Reconstruction and L3 filters:

Both efficiencies estimated via downscaled control samples:

0.1% taken as uncertainty on the spectrum due to L3 trigger.

Background: total contribution and error

Tot bckg ($\mu\mu\gamma$, $\pi\pi\pi$ and ee γ) contribution Error on bckg subtraction (in %)

Additional bckg channels:

- $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$ (Ekhara) ~ 0.8% at low $M^2_{\pi\pi}$
- $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ (Nextcalibur) negligible
- $Φ → f_0 γ → ππγ (Phokhara, Fasterd) negligible$
- $e^+e^- \rightarrow \omega \gamma_{ISR} \rightarrow \pi\pi\pi\gamma$ (Phokhara) negligible

Contribution to Bckg error:

- Uncertainty on e+e- \rightarrow e+e- $\pi^+\pi^-$ contribution
- Error from normalization parameters obtained from the fit

[&]quot;Phokhara": see talk of A. Grzielinska

[&]quot;Ekhara": C.zyz et al

[&]quot;Nextcalibur" : F.A. Berends et al

[&]quot;Fasterd": O. Shekhotvsova et al

Radiator function (H)

In addition of the 0.5% theoretical error we evaluate the experimental uncertainty due to the spread in \sqrt{s} during the data taking in 2002 (since we evaluated H at the fixed energy $\sqrt{s} = 1.019456$ GeV)

We take half the rel. difference between the radiator functions obtained at $\sqrt{s} = 1.0192$ GeV and $\sqrt{s} = 1.0198$ GeV as the experimental syst. uncertainty on the radiator function.

Vacuum Polarisation

For use in the dispersive integral for $\Delta^{\pi\pi}a_{\mu}$, one needs to subtract effects from vacuum polarization (VP) to obtain a *bare* cross section $\sigma^0_{\pi\pi}$:

$$\sigma_{\pi\pi}^{0}(s) = \sigma^{\text{dressed}}_{\pi\pi}(s) \left(\frac{\alpha(0)}{\alpha(s)}\right)^{2} = \sigma_{\pi\pi}(s)/\delta(s)$$

Points obtained from F. Jegerlehner's webpage (the only points which are publicly available!)

Correction is applied only to the cross section $\sigma_{\pi\pi}^0$ (not on $\sigma_{\pi\pi\gamma}$ and $|F_{\pi}|^2$).

Error on VP points introduces an relative error on the value of $\Delta^{\pi\pi}a_{\mu}$ of 0.1%.