DQW LHC-series cavities

Discussion: Trim Tuning

AGENDA

- Updated target frequency table for DQW SPS-series cavities (Silvia)
- Lessons learned from tuning the DQW SPS-series cavities (Silvia)
- Target frequency for DQW LHC-series cavities (All):
 - Jacketed, evacuated, at 2K, delivering 3.4 MV to the LHC beam
- Strategy (All):
 - Metrology
 - Symmetric trim tuning, or last is asymmetric?
 - Cavity profile sketch with location of trim edge needed to calculate available trim tuning range
- Equipment (Nuria):
 - Clamp
 - Probes
- Responsibilities (All):
 - Is RI responsible for trim tuning? Or Nuria and I?
 - Confidentiality agreement

Target frequencies for DQW SPS-series [1]

Operation	Expected shift [kHz]	Expected frequency [MHz]	Target frequency [MHz]	Acceptance range [MHz]	Cavity status
Fabrication tolerances (before W03A/B)		N/A			
TUNING: trimming			401.05	±0.10	Clamped, in air at room temperature
Welds W03A/B (transverse shrinkage and penetration depth effects)	-0.89	400.16			
Leak check	0				
TUNING: action on inductive plates (alternative tuning)			400.16	±0.10	In air at room temperature
Bulk BCP (150 um)					
High temperature baking	+0.22	400.38			
Light BCP (30 um)					
Vessel assembly	-0.42	399.96			
TUNING: action on tank plates (pre-tuning)			399.96	±0.05	In air at room temperature
Assembly of HOM filters, pickup and FPC* (in 5 mm-longer ports)	-0.04	399.92			
Cool down with helium vessel (shifts due to ΔT , Δp , $\Delta \varepsilon$)	+0.71	400.63	- 4 kH	lz	
RF on (LFD)	-0.3004	400.63			
TUNING: with push/pull system			400.73-400.79	±0.005	In vacuum at 2 K

(Target frequencies updated in Nov. 2017 from measurements; information from pull-push tuning not included.)

Measured LFD for CERN DQW SPSseries "bare" cavities with cold test stiffening frame was -350 and -400 Hz/(MV)²[2], thus -4 kHz for 3.4 MV

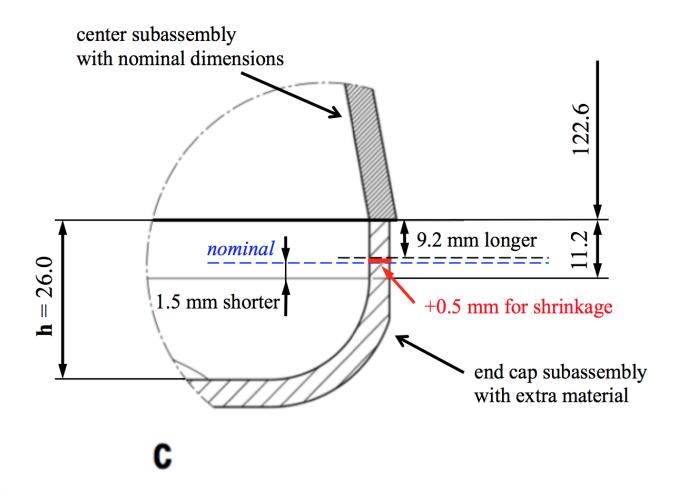
(Preference to operate tuner in pulling mode to avoid buckling.)

Lessons learned from DQW SPS-series cavities

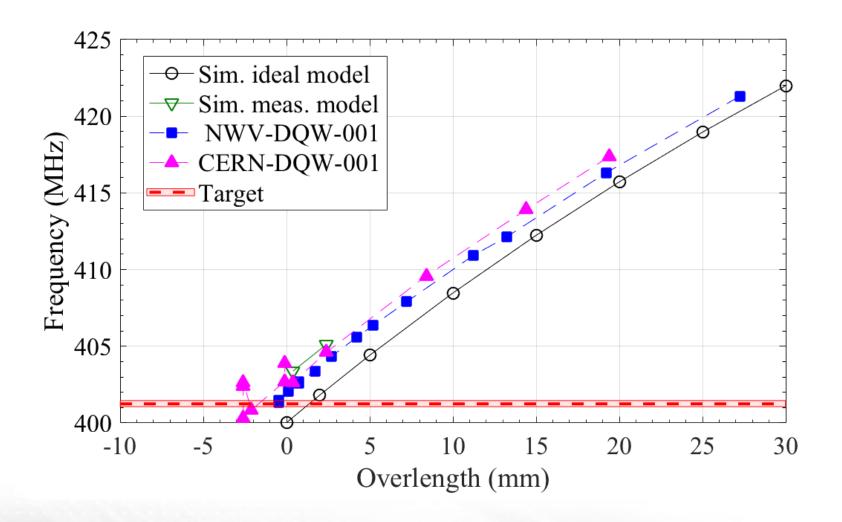
- 1) Deformation during last two welds... found method to tune the frequency back.
- 2) Main frequency shifts:

Ston	Frequency shift (MHz)			
<u>Step</u>	SPS-DQW-01	SPS-DQW-02		
Last two welds	+3.10	+3.11		
ВСР	+0.14	+0.22		
High-T baking	+0.07	-0.001		
He tank assembly, welding	-0.42	-0.57		
Coupler insertion	-0.04	-0.02		
Cool down	+0.71	not available		

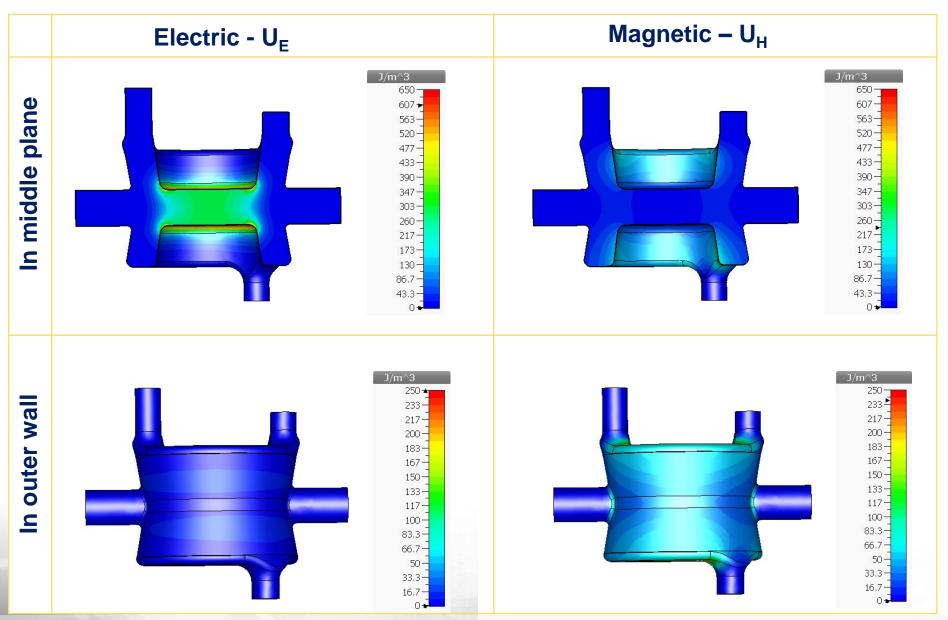
3) Predicted shifts were underestimated and measured shifts have large deviation, but tuning range was sufficient to tune the frequency back.


Tuning methods, range

Tuning method	Tuning sensitivity (MHz/mm)	Minimum frequency step (MHz)	Minimum tuning step (mm)	Tuning range (MHz)	Range limit (mm)
Trimming	Increases from 0.7 to 1.0 with trimming	±0.5	±0.5 Nb machining	(+13, -2)	(+9.2, -2.0)
Alternative tuning	1.2	-0.1	-0.08	-2.4	2.0
Pre-tuning in tank (at warm)	0.77 – 0.94 (calculated)	±0.025	±0.025 Control screws	±0.684	±0.8 Stress in NbTi
Push-pull tuning (at cold)	0.318	±0.000018	±0.00006	±0.508	±1.6 Stress in Nb


Tuning methods, range

- Before the three last subassemblies of the cavity are welded together: trim tuning to correct from frequency deviations resulting from cavity profile within manufacturing and assembly tolerances.
- After leak check and before surface treatment preparatory for cavity cold rf test (that
 is, before light BCP): action on the inductive plates of the cavity to correct
 deviations due to welding, leak check and eventually, bulk BCP and high temperature
 baking.
- After helium vessel assembly: pre-tuning in helium vessel to correct from cavity deformations induced by helium tank assembly.
- For installed and operative cavity: push-pull tuning to shift cavity frequency during operation with different energy beams and to allow cavity transparency and provide a tool to mitigate bunch instabilities.


Trim tuning

Trim tuning

Stored energy density in a DQW SPS-series

REFERENCES

- [1] S. Verdú-Andrés, "Target frequencies for a DQW cavity", EDMS 1569809 v.3 (Nov. 8, 2017): https://edms.cern.ch/document/1569809/3
- [2] A. Castilla-Loeza, "CERN DQW Tests Summary", presented at the 7th HL-LHC Collaboration Meeting, 13-16 Nov. 2017, CIEMAT (Madrid, Spain).

Predicted shifts were underestimated

- Low predictability but cavity is easy to tune.
- Tuning system implemented to correct weld effect offers enough range to bring cavity to target frequency.

Operation	Frequency	Frequency shift due to operation [kHz]		
[CERN-001]	[MHz]	Expected	Measured	
Last welds (W03A/B)	402.69	-890	+1250 / +1850	
Leak check	402.39	0	-237	
Alternative tuning	400.27			
Bulk BCP (150 um)	400.51	-127	+230	
Bake 650 C for 24 h	400.58	0	+67	
Light BCP (30 um)	400.59	-24	+14	
Stiffening frame assembly	400.59	0	0	
Evacuation: Δε	400.69	+134	+100	
Evacuation: $\Delta p + \Delta \epsilon$	400.26			
Cooldown	401.20	+609		
Warm cavity, vented, no stiff. frame	400.51			
Alternative tuning	400.09			