Physics at LHC: SUperSYmmetry

Pedrame Bargassa

20/04/2020

Outline

- SUperSYmmetry: Brief introduction & Motivations
- Reminder of Standard Model (SM) Lagrangian
- SUSY phenomenology: Deeper look
 - "Constructing" the SUSY Lagrangian
 - > Different sectors of MSSM:
 - Squark & Slepton
 - > Chargino
 - Neutralino
 - Higgs

Advised readings:

- "SUSY & Such" S. Dawson, arxiv:hep-ph/9612229v2
- "A supersymmetry primer" S. P. Martin, arxiv:hep-ph/9709356

Brief introduction & Motivations

Supersymmetry: Introduction words

"Generalize" the spin of known fields

SUperSYmmetry :

spin particle $\frac{1}{2} \leftrightarrow$ spin partner 0 spin particle 1 \leftrightarrow spin partner $\frac{1}{2}$

Names		spin 0	spin $1/2$	Ν
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	gluir
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	winos.
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$	
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	bino,
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	
	H_d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	

Names	spin $1/2$	spin 1
gluino, gluon	\widetilde{g}	g
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$
bino, B boson	\widetilde{B}^0	B^0

Observed SUSY particles with same mass than Standard-Model partners ? No !

SUSY : A broken symmetry ! Physical sParticles: Mixture of super-partners

- Charginos (χ^{\pm}) / Neutralinos (χ^{0}) : Bino/Wino \leftrightarrow Higgs (charged/neutral)
- > Squarks, Sleptons : Mixture of $f_L \leftrightarrow f_R$

Supersymmetry: The natural cure of Hierarchy problem

Discovery of a Higgs Boson:

 $m_{_{\rm H}} = 125 \text{ GeV/c}^2$

Consider Higgs mass correction from fermionic loop:

 $\begin{array}{l} \Lambda_{_{\rm UV}}: \mbox{ Energy-scale at which new physics alters the Standard-Model} \\ (momentum cut-off regulating the loop-integral) \\ \mbox{ If } \Lambda_{_{\rm UV}} \sim M_{_{\rm P}} \ \rightarrow \ \Delta m_{_{\rm H}}^2 \sim O(10^{30}) \mbox{ larger than } m_{_{\rm H}} \ !!! \\ \mbox{ And all Standard-Model masses indirectly sensitive to } \Lambda_{_{\rm UV}} \ !!! \end{array}$

$$\Delta m_H^2 = \frac{\lambda_f^2}{16\pi^2} \cdot \left[-2\Lambda_{UV}^2 + \ldots\right] \xrightarrow{\mathrm{H}} \left[-2\Lambda_{UV}^2 + \ldots\right]$$

 $\Delta m^2_{\ H}$ quadratic divergence cancelled : Hierarchy problem naturally solved !

Supersymmetry & Coupling constants

In Gauge theories : Predict coupling constants at a scale Q once we measured them at another:

$$1/\alpha_{i}(Q) = 1/\alpha_{i}(M_{z}) + (b_{i}/2) \log[M_{z}/Q]$$

 b_{i} : Function of N_{g} (=3) and N_{H} (Number of Higgs doublets)

In SUSY: $N_{H}=2$ + New particles contributing to a different evolution of coupling constants -> b_{i} 's such that !

SUSY can naturally be incorporated into Grand Unified Theories

Supersymmetry & Dark Matter

Most general SUSY lagrangian allows interactions leading to Baryon- & Lepton-number violation !

Now if sParticles were to exist at TeV scale:

Such interactions very seriously restricted by experimental observation !

In SUSY: N_{BL} conservation *can* be "protected" by new symmetry R_{p} :

- Eigenvalue: (-1)^{3(B-L)+s}
 - +1 / -1 for SM / SUSY particles
- If R_P conserved: Lightest Supersymmetric Particle (LSP) is stable In most SUSY scenarios, LSP is either:
 - > The lightest neutralino χ^0 (mixture of neutral Higgsinos / Bino / Wino)
 - Scalar neutrinos
- …In all cases a weakly interacting neutral particle

SUSY *can* have a natural candidate for the observed Cold Dark Matter : ~25% of mass of universe

Revisiting SM Lagrangian

SM Lagrangian

Let's put the QCD part aside & have a look at the EW part only

$$L_{EW} = L_{free+interaction} + L_{gauge} + L_{higgs} + L_{yukawa}$$

SM Lagrangian: Free & Interaction parts

$$\mathbf{L}_{\text{free+interaction}} = \boldsymbol{\Sigma}_{f} \mathbf{i} \left[\boldsymbol{\psi}_{f}^{L} \boldsymbol{\gamma}^{\mu} \mathbf{D}_{\mu}^{L} \boldsymbol{\psi}_{f}^{L} + \boldsymbol{\psi}_{f}^{R} \boldsymbol{\gamma}^{\mu} \mathbf{D}_{\mu}^{R} \boldsymbol{\psi}_{f}^{R} \right]$$

→ $\psi_{f}^{L,R}$: Left and Right fermion, CC, Dirac spinors

 $\label{eq:constraint} \begin{array}{l} \rightarrow \mbox{ Gauge-invariant derivatives:} \\ D^{\rm L}_{\ \mu} = \delta_{\mu} - \mbox{i } \mbox{g} \ (\mbox{$\tau_a/2$}) \ W^{\rm a}_{\ \mu} - \mbox{i } \mbox{g'} \ (\mbox{$Y_L/2$}) \ B_{\mu} \\ D^{\rm R}_{\ \mu} = \delta_{\mu} & - \mbox{i } \mbox{g'} \ (\mbox{$Y_L/2$}) \ B_{\mu} \end{array}$

→ g, g': Weak-isospin & -hypercharge couplings → W^{a}_{μ} , B_{μ} : Weak-isospin & -hypercharge fields → τ_{a} , $Y_{L,R}$: Weak-isospin & -hypercharge quantum numbers, matrices **SM Lagrangian:** The gauge part

$$L_{gauge} = -(1/4) W^{a}_{\mu\nu} W^{a\mu\nu} - (1/4) B_{\mu\nu} B^{\mu\nu}$$

→ Gauge-invariant Weak-isospin & -hypercharge fields:

$$W^{a}_{\mu\nu} = \delta_{\mu}W^{a}_{\nu} - \delta_{\nu}W^{a}_{\nu} + \mathbf{g} \varepsilon_{abc} W^{b}_{\mu}W^{c}_{\nu}$$
$$B_{\mu\nu} = \delta_{\mu}B_{\nu} - \delta_{\nu}B_{\nu}$$

 2^{nd} term of $W^{a}_{\mu\nu}$: Self-interacting character of Weakisospin interaction \rightarrow *This is the term allowing triboson couplings in SM*

A similar term exists in QCD sector of SM: QCD is also non-abelian \rightarrow Allows self-coupling

SM Lagrangian: The Higgs part

$$\mathbf{L}_{\mathbf{Higgs}} = (\mathbf{D}_{\mu} \phi)^{+} (\mathbf{D}^{\mu} \phi) - \mathbf{V}(\phi)$$

$\rightarrow 1^{st}$ term: Higgs \leftrightarrow Boson interaction: Gives Boson masses Gives Higgs↔Boson couplings \rightarrow V(ϕ): Pure Higgs interaction: Mass: $m_{_{\rm H}} = \sqrt{-2\mu^2} = \sqrt{2\lambda v^2}$ Coupling: Calculate :-D The lagrangian has to be SU(2)xU(1) invariant \rightarrow 4 scalar <u>real</u> fields: $\phi = (\phi^+, \phi^0)$ $\phi^+ = (1/\sqrt{2})(\phi_1 + i\phi_2)$ $\phi^0 = (1/\sqrt{2})(\phi_3 + i\phi_4)$

SM Lagrangian: Yukawa

$$L_{yukawa} = -G_{d}(\bar{u},\bar{d})_{L}(\phi^{+},\phi^{0}) d_{R} - G_{u}(\bar{u},\bar{d})_{L}(-\bar{\phi}^{0},\phi^{-}) u_{R}$$

+ hermitian-conjugate

(u,d): Up & Down doublets of <u>quarks / leptons</u>

Once Higgs sector is EW-broken: $\phi = (1/\sqrt{2})(0,v+H) \rightarrow \text{``Confers''} \text{ mass to fermions:}$ $L_{yukawa} = -m_d \overline{d}_L d_R (1+H/v) - m_u \overline{u}_L u_R (1+H/v)$ because: $m_f = G_f v/\sqrt{2}$

For neutrinos: $m = G_v v / \sqrt{2} \sim 0$

"Constructing" the SUSY Lagrangian

MSSM: Writing the Lagrangian

Recipe to build the particle content and Lagrangian:

- Each SM fermion f has 2 chiral superpartners: $f_{L} \& f_{R}$
- SM fermions and SUSY sfermions are regrouped in superfields

- Gauge superfields: "Simply" containing the SM gauge fields and their SUSY partners
- Gauge superfields: Respecting the SU(3) x SU_L(2) x U(1)

Superfields of Gauge & Matter, by definition, respect the gauge symmetries extended from the SM

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{Q}	3	2	$\frac{1}{6}$	$(u_L, d_L), (\tilde{u}_L, \tilde{d}_L)$
\hat{U}^c	3	1	$-\frac{2}{3}$	$\overline{u}_R,~ ilde{u}_R^*$
\hat{D}^c	3	1	$\frac{1}{3}$	$\overline{d}_R, ilde{d}_R^*$
\hat{L}	1	2	$-\frac{1}{2}$	$(\nu_L, e_L), (\tilde{\nu}_L, \tilde{e}_L)$
\hat{E}^{c}	1	1	1	$\overline{e}_R, \ \widetilde{e}_R^*$
\hat{H}_1	1	2	$-\frac{1}{2}$	(H_1, \tilde{h}_1)
\hat{H}_2	1	2	$\frac{1}{2}$	$(H_2, ilde{h}_2)$

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{G}^a	8	1	0	$g,~ ilde{g}$
\hat{W}^i	1	3	0	$W_i, \ \tilde{\omega}_i$
\hat{B}	1	1	0	$B, ilde{b}$

The interaction part:

$$\mathcal{L}_{int} = -\sqrt{2} \sum_{i,A} g_A \left[S_i^* T^A \overline{\psi}_{iI} \lambda_A + \text{h.c.} \right] - \frac{1}{2} \sum_A \left(\sum_i g_A S_i^* T^A S_i \right)^2$$

- Interaction-specific quantum number
- S_i: Scalar fields: Squarks & Sleptons
- ψ_i : Higgsinos
- > λ_{A} : Gauge <u>fermions</u>

The gauge invariant derivative part: Same as introduced in SM, but generalized to superfields

The kinetic part:

$$\mathcal{L}_{KE} = \sum_{i} \left\{ (D_{\mu} S_{i}^{*}) (D^{\mu} S_{i}) + i \overline{\psi}_{i} D \psi_{i} \right\} + \sum_{A} \left\{ -\frac{1}{4} F_{\mu\nu}^{A} F^{\mu\nu A} + \frac{i}{2} \overline{\lambda}_{A} D \lambda_{A} \right\}$$

MSSM: SM ↔ MSSM correspondance

Fermion	Scalar	Gauge field
$\frac{\mathbf{SM}}{\mathrm{i}\overline{f}}\gamma^{\mu}D_{\mu}f+$	$(D_{\mu} \phi)^{+}(D^{\mu} \phi)$ SM: Higgs	- (1/4) F ^{μν}
<u>MSSM</u> (include	es what is above)	
$i \psi \gamma^{\mu} D_{\mu} \psi +$ MSSM: Higgsinos	$(D_{\mu} S_{i})^{+}(D^{\mu} S_{i})$ Squarks & Sleptons	- (1/4) $F_{\mu\nu}F^{\mu\nu}$ Same as above
+(i/2) $\lambda_{A}^{-} \gamma^{\mu} D_{\mu} \lambda$ Gauge fermions	Ă	

SUSY: Let's minimally break it: Broken & effective MSSM

SUSY breaking

How is it broken ? We don't know... did not discover it (yet)...

How we *think* it's broken: Models/Implications by/for the

theorists/experimentalists

MSSM

mSUGRA Spontaneous Super-Gravity breaking: More constrained \rightarrow 5 parameters @ breaking scale -> RGEs \rightarrow Our mass spectrum

- m₀: Scalar mass
- m_{1/2}: Fermion mass
- > μ : Higgs parameter ($\mu H_1 H_2$)
- A: Tri-linear squark/slepton mixing term

$$tan\beta = /$$

Parametrizing our ignorance of SUSY breaking, i.e. no hypothesis: Un-constrained \rightarrow 124 parameters

- > $\tan\beta / \mu / M_A$ (pseudoscalar Higgs boson mass)
- ▶ M_{L1,2,3}: Controls slepton masses
- M_{Q1,2,3}: Controls squark masses
- M_{1.2}: Controls neutralino/chargino sectors

This is the most general Lagrangian we can write, hence the large number of unknowns: Only the spin hypothesis has been made Pedrame Bargassa – LIP Lisbon

MSSM: Effective Lagrangian

- We don't know <u>how</u> SUSY is broken, but can write the most general broken effective Lagrangian
- Soft: The breaking of the symmetry is taken care of by introducing "soft" mass terms for scalars & gauginos: Soft because no reintroduction of quadratic divergence
- Maximal dimension of soft operators: $\leq 3 \rightarrow$ Mass terms, Bilinear & Trilinear terms

$$\begin{split} -\mathcal{L}_{soft} &= \boxed{m_{1}^{2} \mid H_{1} \mid^{2} + m_{2}^{2} \mid H_{2} \mid^{2}}_{=} - \boxed{B\mu\epsilon_{ij}(H_{1}^{i}H_{2}^{j} + \text{h.c.})} + \boxed{\tilde{M}_{Q}^{2}(\tilde{u}_{L}^{*}\tilde{u}_{L} + \tilde{d}_{L}^{*}\tilde{d}_{L})} \\ &+ \widetilde{M}_{u}^{2}\tilde{u}_{R}^{*}\tilde{u}_{R} + \widetilde{M}_{d}^{2}\tilde{d}_{R}^{*}\tilde{d}_{R} + \widetilde{M}_{L}^{2}(\tilde{e}_{L}^{*}\tilde{e}_{L} + \tilde{\nu}_{L}^{*}\tilde{\nu}_{L}) + \widetilde{M}_{e}^{2}\tilde{e}_{R}^{*}\tilde{e}_{R}} \\ &+ \frac{1}{2} \left[\boxed{M_{3}\overline{\tilde{g}}\tilde{g}} + M_{2}\overline{\tilde{\omega}_{i}}\tilde{\omega}_{i} + M_{1}\overline{\tilde{b}}\tilde{b} \right] + \frac{g}{\sqrt{2}M_{W}}\epsilon_{ij} \left[\frac{M_{d}}{\cos\beta}A_{d}H_{1}^{i}\tilde{Q}^{j}\tilde{d}_{R}^{*} \right] \\ &+ \frac{M_{u}}{\sin\beta}A_{u}H_{2}^{j}\tilde{Q}^{i}\tilde{u}_{R}^{*} + \frac{M_{e}}{\cos\beta}A_{e}H_{1}^{i}\tilde{L}^{j}\tilde{e}_{R}^{*} + \text{h.c.} \right] \quad . \end{split}$$

Specificity of SUSY: Writing the most general Lagrangian, generalizing the spins of fields, SUCH that quadratic divergences are always shut down

Squark & Slepton sector

MSSM: Squark & Slepton sector

Physical states are 2 scalar mass-eigenstates: Mixtures of left- & -right chiral superpartners (scalars) of SM quark and leptons

Let's pick-up example of the top sector: If $[f_L - f_R]$ chiral basis:

$$M_{\tilde{t}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{T}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{T}(A_{T} + \mu\cot\beta) \\ M_{T}(A_{T} + \mu\cot\beta) & \tilde{M}_{U}^{2} + M_{T}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}$$

- $\sim \widetilde{M}_{Q}$: Left squark mass
- $\sim \widetilde{\mathrm{M}}_{_{\mathrm{U}}}$: Right squark mass
- A_T: Trilinear coupling specific to the top sector
- $M_Q = M_T$: Mass of the SM particle
- µ: Higgs (bilinear) mixing parameter
- β: Higgs vev-specific parameter (see in a couple of slides): Plays a role in the mixing

Chargino sector

MSSM: Chargino sector

Physical states are 2 fermionic mass-eigenstates: Mixtures of charged winos and charged higgsinos, which are SUSY eigenstates

In the charged [wino – higgsino] basis:

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & -\mu \end{pmatrix}$$

- M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter

Neutralino sector

MSSM: Neutralino sector

Physical states are 4 fermionic mass-eigenstates: Mixtures of neutral winos w^0 , bino b, and 2 neutral higgsinos, which are SUSY eigenstates

In the neutral $[b - w^0 - h^0_1 - h^0_2]$ basis:

$$M_{\tilde{\chi}_{i}^{0}} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\sin\theta_{W} & 0 & \mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & \mu & 0 \end{pmatrix}$$

- M₁: Mass of the bino
- M₂: Mass of the wino
- μ: Higgs (bilinear) mixing parameter

<u>Exercise</u>: Qualitatively gauge the influence of each parameters in the mass-matrix above on the "type" of neutralinos

EXERCISES

1/ Install the SuSpect software on your computer: This one of the only SUSY spectrum calculators with parametrized MSSM (pMSSM) parameters as input: You don't have 124, but 27 parameters to play with ;-)

2/ Just play with different parameters and follow evolution of the generated masses

2i) What are the most sensitive parameters for different types of particles ?

2ii) Once you get an idea for 2i): For a set of frozen parameters, produce plots showing evolution of the physical masses, say , as function of pMSSM parameters

- For 2i) & 2ii), let's pick-up:
 - \rightarrow The lightest neutralino
 - \rightarrow The chargino
 - \rightarrow The lightest stop and stau
 - \rightarrow The lighest Higgs

3/ Once your fingers are well warmed-up with pMSSM, produce the points on the following page :-D

Stop decays: Different diagrams for different domains

$$\begin{split} \widetilde{\mathbf{t}}_{1} \rightarrow \mathbf{b} \ \mathbf{W}^{+} \ \widetilde{\boldsymbol{\chi}}_{1}^{\ 0} & \widetilde{\mathbf{t}}_{1} \rightarrow \mathbf{b} \ \widetilde{\boldsymbol{\chi}}_{1}^{\ +} & \widetilde{\mathbf{t}}_{1} \rightarrow \mathbf{t} \ \widetilde{\boldsymbol{\chi}}_{1}^{\ 0} \\ \\ \underbrace{\mathbf{W}_{2}^{200}}_{\text{setar top quark mass [GeV/c]}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} & \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} & \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}^{\text{Scalar top quark mass [GeV/c]}} \\ \mathbf{Conditions:} \\ \underbrace{\mathbf{W}_{1} < \mathbf{X}_{1}^{\ 0} < \widetilde{\mathbf{X}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 0} < \widetilde{\mathbf{X}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 0} < \widetilde{\mathbf{X}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 0} \\ \underbrace{\mathbf{W}_{140}}_{1}^{\ 0} < \widetilde{\mathbf{X}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 0} < \widetilde{\mathbf{W}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 1} \\ \underbrace{\mathbf{W}_{100}}_{\text{scalar top quark mass [GeV/c]}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{100}}_{\text{scalar top quark mass [GeV/c]}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{\text{top 200 300 400 500 600 700 800}}_{\text{scalar top quark mass [GeV/c]}}^{\text{MSSM grid points}} \\ \underbrace{\mathbf{W}_{140}}_{1} < \underbrace{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}}_{1} < \mathbf{W}_{1}^{\ 1} \\ \underbrace{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{X}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 1} \\ \underbrace{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 1} \\ \underbrace{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 1} \\ \underbrace{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \mathbf{W}_{1}^{\ 1} \\ \underbrace{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} < \widetilde{\mathbf{W}_{1}^{\ 1} <$$

Make $\widetilde{\chi}_{1}^{+}$ virtual