

Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST

The Higgs boson Decays to b-

quarks and more...

Patricia Conde Muíño (IST & LIP)

Higgs lectures so far...

Course on Physics at the LHC

from Monday, 2 March 2020 (07:00) to Friday, 26 June 2020 (18:40) LIP (Conference Room) Sessions / : Talks

lks : Bre

	2 Mar 2020	6 Mar 2020	9 Mar 2020	10 Mar 2020	16 Mar 2020	
AM						
PM	17:00 Experimental program at the LHC - Joao Varela (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part) (Conference Room)	17:00 Standard Model at the LHC - Joao Varela (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part) (Conference Room)	17:00 Detectors 1 - Pedro Vieira De Castro Ferreira Da Silva (CERN) Michele Gallinaro (LIP Lisbon) (Conference Room)	17:00 Detectors 2 - Pedro Vieira De Castro Ferreira Da	17:00 Statistics 1 - Pietro Vischia (Universite' Catholique de Louvain (UCL)) (Conference Room) ▶ 2020-03-16to18_Statistics_LIP-LHC-Course_vischia_part1.pdf ↓ ↓	17:00 S (0
	Lecture1-Exp at LHC.pdf	Lecture2-SM at LHC.pdf		Silva (CERN) (Conference Room)		

23 Mar 2020 24 Mar 2020		24 Mar 2020	30 Mar 2020	1 Apr 2020	6 Apr 2020	
	17:00 Top Physics 1 - Michele Gallinaro (LIP Lisbon) (Conference Room)	17:00 Top Physics 2 - Michele Gallinaro (LIP Lisbon) (Conference Room) 2020_course_Top_Lecture2.pdf 2020_course_Top_Lecture2.pdf	17:00 Top Physics 3 - Antonio Onofre (Universidade de Coimbra (PT)) (Conference Room) ToptopCouplings_AO.pdf	17:00 Higgs Physics 1 - Ricardo Jose Morais Silva Goncalo (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part) (Conference Room) P HiggsLecture1.pdf	17:00 Higgs Physics 2 - Pedro Vieira De Castro Ferreira Da Silva (CERN) (Conference Room) Phiggsproperties_6Apr2020.pd	

Higgs lectures so far...

WEDNESDAY, 1 APRIL

→ 18:30 Higgs Physics 1

Introduction

Reminder of some shortcomings of the SM: masses, WW scattering. The Higgs mechanism. Production and decay of the Higgs boson at colliders: LEP, Tevatron and LHC. Previous searches at LEP and the Tevatron.

Speaker: Ricardo Jose Morais Silva Goncalo (LIP Laboratorio de Instrumentacao e Fisica Experimental de Part)

MONDAY, 6 APRIL

17:00 → 18:30 Higgs Physics 2

Models, properties, and interpretation. Case-study of the coupling strengths. Case-study of the hypothesis test for different spin-parity assignments.

Speaker: Pedro Vieira De Castro Ferreira Da Silva (CERN)

In this lecture

*Reminder

The Higgs Lagrangian in the SM and how to probe it

*Challenges and difficulties of the Higgs boson study at the LHC
 *Photon reconstruction and the searches in the H→γγ channel
 *The H→bb search

- Event selection
- Background measurement
- Fits
- Combinations

*Other channels to look at the Higgs couplings to quarks

Is it possible to improve/complement the measurements done?

SM Higgs Lagrangian after symmetry breaking

 $\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$

★ Very predictive theory:

- ★ Can calculate everything but the Higgs boson mass...
- ★ Once the Higgs boson is found... we can also probe everything!

The SM Higgs Lagrangian after symmetry breaking

7

Higgs decays to vector bosons

- Couplings to fermions
- Experimental measurements:

Decay rates to quarks & leptons

Н

- Couplings to fermions
- Experimental measurements:
 - Decay rates to quarks & leptons
 - Top quark coupling:
 - Indirect: gg fusion production mode
 - But model dependent —> need direct probes!
 - ttH associated production
 - Rare decays

- Couplings to fermions
- Experimental measurements:
 - Decay rates to quarks & leptons
 - Top quark coupling:
 - Indirect: gg fusion production mode
 - But model dependent —> need direct probes!
 - ttH associated production
 - Rare decays

 Phys. Lett. B 786 (2018) 134
 ATLAS-CONF-2018-053

 Phys. Rev. Lett. 120 (2018) 211802
 arXiv:1811.08856

 Phys. Lett. B 786 (2018) 59
 ATLAS-CONF-2018-026

 Phys. Rev. D 98 (2018) 052003
 Phys. Lett. B 784 (2018) 173

New particles? What about dark matter?

 $\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$ Couplings to EW gauge bosons $\begin{array}{l} \text{Higgs} \\ \text{self-couplings} \end{array} \qquad \begin{array}{l} \text{Couplings to} \\ \text{fermions} \end{array}$ $\begin{bmatrix} m_{W}^{2}W^{\mu+}W_{\mu}^{-} + \frac{1}{2}m_{Z}^{2}Z^{\mu0}Z_{\mu}^{0} \end{bmatrix} \cdot \left(1 + \frac{h}{v}\right)^{2} \qquad -\mu^{2}h^{2} - \frac{\lambda}{2}vh^{3} - \frac{1}{8}\lambda h^{4} \qquad -\sum_{f}m_{f}\bar{f}\left(1 + \frac{h}{v}\right)$ $- - \sqrt{2}i\frac{m_{V}^{2}}{v}g^{\mu\nu} \qquad - \sqrt{3}i\frac{m_{H}^{2}}{v} \qquad - \sqrt{3}i\frac{m_{H}^{2}}{v^{2}} \qquad - \sqrt{3}i\frac{m_{H}^{2}}{v^{2}} \qquad - \sqrt{3}i\frac{m_{H}^{2}}{v^{2}} \qquad - \sqrt{2}\mu = \sqrt{\lambda}v \ (v = \text{vacuum expectation value})$

* Couplings to new particles?

* Experimental measurements:

Search for invisible decays

Total decay width:

Constraint from visible decays

Interference effects in ZZ production

Higgs self interactions

$$\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$$

arXiv:1811.11028

arXiv:1811.04671

ATLAS-CONF-2018-043

JHEP 11 (2018) 040

arXiv:1804.06174

13

Higgs mass

HH production

The search for $H \rightarrow bb$ decays

- > Higgs boson observed & measured mainly in bosonic channels $(\gamma\gamma, WW, ZZ)$
 - All results compatible with SM
- \succ H \rightarrow bb: largest BR in the SM (~58%)
 - Constrain total width and measure absolute couplings
 - Probe the Higgs couplings to up-type quarks
- Evidence of fermionic decays in Run 1:
 - H→: 5.5 σ (expected 5 σ)
 - H→bb: 2.6 σ (expected 3.7 σ)
- ► Run 1 signal strength for H→bb: $\mu_{bb}^{CMS+ATLAS} = 0.70^{+0.29}_{-0.27}$

ATLAS+CMS Run 1 Coupling combination

The ATLAS detector

Identification of particles in ATLAS

Jets

Jets reconstruction and calibration

- Complex underlying physics
 - spectator interactions
 - initial and final state gluons
 - energy from different pp interactions
 - different types of jets: light quarks,
 - ▶ gluons, b/c/t
- Complex detector properties:
 - non-linear energy response
 - non-instrumented regions,
 - dead material
 - invisible energy
- Algorithm effects:
 - Out of cone radiation, infrared safeness

18

ATLAS pp data: April 25-October 24 2018

Inn	er Tracl	<er< th=""><th>Calorin</th><th>neters</th><th>Mu</th><th>on Spea</th><th>trome</th><th>ter</th><th>Magn</th><th>ets</th></er<>	Calorin	neters	Mu	on Spea	trome	ter	Magn	ets
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.8	100	99.7	100	99.8	99.7	100	100	100	99.6

Good for physics: 97.5% (60.1 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions at \sqrt{s} =13 TeV between April 25 – October 24 2018, corresponding to a delivered integrated luminosity of 63.8 fb⁻¹ and a recorded integrated luminosity of 61.7 fb⁻¹. Dedicated luminosity calibration activities during LHC fills used 0.7% of recorded data and are included in the inefficiency. The luminosity includes 193 pb⁻¹ of good data taken at an average pileup of μ =2.

80

Pile-up

 Event with a Z→µµ decay plus 65 additional pp interactions
 Very difficult to reconstruct and distinguish different particles

| Standard Model | backgrounds

Production cross section of

Jets ~10⁸ larger than σ_H B-jets ~10⁷ times larger than σ_H W-bosons: nearly 10000 times higher than σ_H We need

Clear experimental signatures in the detector For H→bb search:

> Use sub-dominant production modes Associated production with vector bosons Vector boson fusion

| Higgs production at the LHC

- Dominant gluon-gluon fusion
- Sub-dominant:
 - Vector boson fusion
 - WH and ZH associated production
 - ttH associated production

At the LHC... can only measure production and decay together

H→bb decay

Searches performed using sub-dominant production modes:

- WH and ZH associated production (VH)
 - Three different channels: 0, 1 and 2 charged leptons

VBF analysis

- \blacktriangleright Considered final states with/out additional γ
 - Final state photon helps reducing the background due to interference effects for the background

ttH production

VH(bb) searches: 3 channels

O-lepton:
 E_miss > 150 GeV

≻ 1-lepton:

e/µ, p_{_}>25 GeV

Tight isolation Missing E₊ >30 GeV (e chn)

p_V > 150 GeV

≻ 2-leptons:

Isolated ee, μμ p_T¹>25 GeV, p_T²>7 GeV p_T^V > 75 GeV

 m_{\parallel} compatible with m_{z}

Plus: ≻ Two jets anti-kT with R=0.4 P_j1>45 GeV p_j2>20 GeV **B-tagging** \succ Eff: 70%, light jet mistag rate: 0.3%, charm mistag rate: 8% Analysis categories: \succ 2/3 jets (0/1lepton) 2/≥3jets (2lept.)

 $p_{T}{}^{V}\ bins$

Invariant mass resolution

- Mass resolution improvements
 - b-jets need dedicated calibration
 - Add muons in the vicinity (semi-lep. decays)
 - Simple average jet pT correction. Accounts for neutrinos, and interplay of resolution and pT spectrum effects.
- Improvement ~ 18%
- Kinematic fit for leptons:
 - Profit from the good lepton resolution
 - Constraint jet kinematics
 - Improvement ~40%

Main backgrounds

VH(bb) Main backgrounds

> Dominant backgrounds dependent on channel

Z+bjets dominates in 0, 2 lepton channels

Top quark and W+jets in 1 lepton channel

Multi-jet important in 1 lepton channel

Multi-variate analysis

Boosted decision tree (BDT)

Combine many different variables

Trained in 8 categories:

3 lepton, 2/3 jets, low/high p_{τ}^{V} bin (2 lepton channel)

> Most discrimination from m_{bb} and $\Delta R(b_1, b_2)$

New in run 2: m_{Top}, |∆Y(V,H)|
 → +7% in sensitivity

Variable	0-lepton	1-lepton	2-lepton	
$p^V_{ ext{T}}$	$\equiv E_{\rm T}^{\rm miss}$	×	×	
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×		
$p_{\mathrm{T}}^{b_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(ec{b_1},ec{b_2})$	×	×	×	
$ \Delta\eta(ec{b_1},ec{b_2}) $	×			
$\Delta \phi (ec V, b ec b)$	×	×	×	
$ \Delta\eta(ec V, bec b) $			×	
$m_{ m eff}$	×			
$\min[\Delta \phi(ec{\ell},ec{b})]$		×		
$m^W_{ m T}$		×		
$m_{\ell\ell}$			×	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×	
$m_{ m top}$		×		
$ \Delta Y(ec V, bec b) $		×		
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×	
m_{bbj}	×	×	×	
			28	

VH(bb) Combined fit

- > Signal strength from profiled likelihood fit
 - ➤ Take into account all event categories
- Use BDT discriminant as input
- > Control regions to constrain the backgrounds

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

29

Background modelling

Slide from Y. Ma (LAL)

- Use state-of-the-art MC generators (except MJ which is modelled in 1lepton using a data-driven method)
- Constrain (shape and normalization) from data by using high purity control regions
- Main background normalizations floating in the fit

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

0.5

- Parametrize extrapolation uncertainties across regions as uncertainties on ratios of yields
- Shape uncertainties on BDTs

Post-fit distributions

Control regions are used to constrain the backgrounds

 $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$

W transverse mass 1 lep., 3jets, 2 btags

2 leptons, 2 tags, 2 jets BDT discriminant

Diboson VZ (Z→bb) "search"

- Search for the known signal $Z \rightarrow bb$ (diboson search)
 - Test the fit and the all the analysis procedures

Systematic uncertainties

Source of u	lectanty	σ_{μ}		
Total	Total			
Statistical	0.161			
Systematic		0.203		
Experiment	al uncertainties			
Jets		0.035		
$E_{\rm T}^{\rm miss}$		0.014		
Leptons		0.009		
	<i>b</i> -jets	0.061		
b-tagging	c-jets	0.042		
	light-flavour jets	0.009		
	extrapolation	0.008		
Pile-up		0.007		
Luminosity		0.023		
Theoretical	and modelling uncer	rtainties		
Signal		0.094		
Floating nor	malisations	0.035		
Z + jets		0.055		
W + jets		0.060		
tī		0.050		
Single top q	uark	0.028		
D:1		0.054		
Diboson		0.054		

Concerne a Concerne to laste

MC statistical 0.070

Analysis dominated by systematic uncertainties

Measured by impact on signal strength (μ)

Many important sources !

b-tagging both *b* and *c* jet tagging calibration

• Resp. \sim 3% and \sim 10% per jet

Background modelling Z+hf, W+hf, $t\bar{t}$

- Mainly shape and extrapolation uncertainties Signal modelling little impact on significance
 - Dominated by systematic uncertainties on the acceptance

MC stats never-ending race between data stat and MC stat

- Use of dedicated MC filters
- Not easy in all cases, e.g $t\bar{t}$ phase space in 0/1-lepton

Slide from N. Morange

Di-jet mass analysis

- 3.6σ observed
- 3.5σ expected

$$\mu_{VH}^{bb} = 1.06^{+0.36}_{-0.33} = 1.06 \pm 0.20(\text{stat.})^{+0.30}_{-0.26}(\text{syst.})$$

Phys. Lett. B 786 (2018) 59

WH and ZH with $H \rightarrow bb$ results

- > 79 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV
 - > 4.9 σ evidence observed (4.3 σ expected)
 - > systematic uncertainties start to dominate!!

 $\mu_{VH}^{bb} = 1.16^{+0.27}_{-0.25} = 1.16 \pm 0.16(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})$

Dominant systematics from b-tagging, background normalisation & modelling (W+jets, Z+jets, top)

Phys. Lett. B 786 (2018) 59

H→bb Run 1 + Run 2 combination

- Includes ttH and vector boson fusion (with H->bb) channels
- 5.4σ observation!! (5.5σ expected)

CIÊNCIA > ESPACO MEDICINA ECOSFERA

FÍSICA DE PARTÍCULAS

Bosão de Higgs visto (finalmente) a desintegrar-se em quarks bottom

Descoberta anunciada no Laboratório Europeu de Física de Partículas (CERN) é um passo fundamental para perceber como o bosão de Higgs faz com que as partículas fundamentais adquiram massa.

Observation of VH production

- Combination of H→bb with two more channels
 - Four leptons (ZZ*)

YY

Direct observation of the Higgs produced in association with vector bosons!

Channel	Significance		
	Exp.	Obs.	
$H \to ZZ^* \to 4\ell$	1.1	1.1	
$H \rightarrow \gamma \gamma$	1.9	1.9	
$H \rightarrow b \bar{b}$	4.3	4.9	
VH combined	4.8	5.3	

CMS VH with $H \rightarrow bb$ observation

CMS inclusive $H \rightarrow bb$ search

> Simultaneous fit to search for $Z \rightarrow bb$ and $H \rightarrow bb$ signals

Boosted H→bb Decay (VH production)

More sensitive to new physics effects!

Run: 338349 Event: 616525246 2017-10-16 20:24:46 CEST

New physics in the hWW vertex?

- New physics can modify the hWW vertex structure
 - Will affect cross sections
 - Particularly at high p_T !!
 - CP-even and CP-odd operators
 - CP odd operators can introduce CP violation
 - Angular observables to disentangle these contributions in future!

$$i\Gamma^{\mu\nu}_{HWW}(k_1,k_2) = i(g_2 m_W) \left[g^{\mu\nu} \left(1 + a_W - \frac{b_{W1}}{m_W^2} (k_1 \cdot k_2) \right) + \frac{b_{W1}}{m_W^2} k_1^{\nu} k_2^{\mu} + \frac{c_W}{m_W^2} \epsilon^{\mu\nu\rho\sigma} k_{1_{\rho}} k_{2_{\sigma}} \right]$$

ATLAS VH boosted studies

Binned profile likelihood fit in m_1 in **14 regions**

 \rightarrow *simultaneously* extracting *VH*(\rightarrow *bb*) and *VZ*(\rightarrow *bb*) signal strengths

H.Arnold, Seminar @ CERN

Yesterday!

54

Cross section as a function of p_T(V)

- Couplings to fermions
- Experimental measurements:
 - Decay rates to quarks & leptons

Н

Second generation: $H \rightarrow \mu\mu$ and $H \rightarrow cc$

■ H→µµ

Very low branching fraction but sensitivity reaching close to SM

■ H→cc:

- Extremely challenging: huge backgrounds
- Similar strategy as VH with $H \rightarrow bb$
- Expected sensitivity ~150×SM

	ſℒdt	95% CL uj	oper limit	
	jæut	Expected	Observed	
Η→μμ	78.9 fb ⁻¹	2×SM	1.5×SM	
Н→сс	36.1 fb-1	150_{-40}^{+80}	110×SM	

Entries / GeV

ATLAS Preliminary

 χ^2 /ndof = 31.2/48

50 → VBF tight

\s = 13 TeV, 79.8 fb

m.... [GeV]

45

H→uu analysis

ackaround

Signal × 20

- Couplings to fermions
- Experimental measurements:
 - Decay rates to quarks & leptons
 - Top quark coupling:
 - Indirect: gg fusion production mode
 - But model dependent —> need direct probes!
 - ttH associated production
 - Rare decays

t,b, ...

Probing the Hbb coupling

- Questions
 - Is it really as the SM predicts?
 - What is the sign of the coupling?
 - Are there anomalous components?
- Probing the sign of the Hbb coupling:
 - Decay $H \rightarrow \Upsilon \gamma$

- Interference between two difference diagrams results in very low BR
- Can be enhanced if the sign of the coupling is the opposite!
- Very difficult channel —> will need HL-LHC

T. Modak et al. Phys.Rev. D94 (2016) no.7, 075017

Hcc and Hbb vertices

ATLAS

BR (H \rightarrow J/ $\Psi\gamma$) ~3×10⁻⁶

BR (H→Υγ) ~9×10⁻⁸

Branching fraction limit (95% CI)	Expected	Observed
Dranching fraction mint (95 % CL)	Expected	Observed
$\mathcal{B}(H \to J/\psi \gamma) [10^{-4}]$	$3.0^{+1.4}_{-0.8}$	3.5
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)\left[10^{-4}\right]$	$15.6^{+7.7}_{-4.4}$	19.8
$\mathcal{B}(Z \to J/\psi \gamma) [\ 10^{-6} \]$	$1.1^{+0.5}_{-0.3}$	2.3
$\mathcal{B}\left(Z \rightarrow \psi\left(2S\right)\gamma\right)\left[\ 10^{-6}\ \right]$	$6.0^{+2.7}_{-1.7}$	4.5
$\mathcal{B}(H \to \Upsilon(1S)\gamma) [\ 10^{-4} \]$	$5.0^{+2.4}_{-1.4}$	4.9
$\mathcal{B}(H \to \Upsilon(2S)\gamma) [\ 10^{-4} \]$	$6.2^{+3.0}_{-1.7}$	5.9
$\mathscr{B}(H \to \Upsilon(3S)\gamma) [\ 10^{-4} \]$	$5.0^{+2.5}_{-1.4}$	5.7

CMS	Channel	Polarization	${\cal B}({ m Z}~({ m H}) ightarrow { m J}/\psi \gamma)$ at 95% CL
	$ m Z ightarrow m J/\psi \gamma$	Unpolarized Transverse	$1.4 (1.6^{+0.7}_{-0.5}) \times 10^{-6}$ 1.5 (1.7 ^{+0.7} _{-0.5}) × 10^{-6}
	$H \rightarrow J/\psi \gamma$	Longitudinal Transverse	$1.2 (1.4^{+0.6}_{-0.4}) \times 10^{-6}$ 7.6 (5.2 ^{+2.4} _{-1.6}) × 10 ⁻⁴

- Rare decays sensitive to Hcc or Hbb vertex
 - Direct and indirect contributions
- Could be enhanced due to BSM physics
- No signal observed →imposed limits on BR

CMS search for $H \rightarrow J/\psi J/\psi, H \rightarrow \Upsilon \Upsilon$

- Expected BR~10⁻⁹, 10⁻⁸
- Search performed by CMS recently
 - > Z channel used as reference

- Important also to understand theoretical calculations/uncertainties

-		
Process	Observed	Expected
${\cal B}(H\to J/\psi J/\psi)$	$1.8 imes10^{-3}$	$(1.8^{+0.2}_{-0.1})\times 10^{-3}$
$\mathcal{B}(H\to YY)$	$1.4 imes 10^{-3}$	$(1.4\pm 0.1) imes 10^{-3}$
${\cal B}(Z \to J/\psi J/\psi)$	$2.2 imes 10^{-6}$	$(2.8^{+1.2}_{-0.7})\times 10^{-6}$
$\mathcal{B}(Z \to YY)$	$1.5 imes 10^{-6}$	$(1.5\pm 0.1)\times 10^{-6}$

Higgs self interactions

$$\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$$

* Experimental measurements:

Higgs mass

HH production

	Eur. Phys. J. C 78 (2018) 1	007
arXiv:1811.11028	JHEP 11 (2018) 040	
arXiv:1811.04671	arXiv:1804.06174	
ATLAS-CONF-2018-	-043	50

70 (2010) 1007

arXiv:1804.06174

JHEP 11 (2018) 040

Search for di-Higgs production

- Sensitive to Higgs self coupling and new physics
- Many different final states studied
 - WW*WW*, bbbb, $bb\tau\tau$, $bb\gamma\gamma$, bbWW*
- No signal observed yet

160

Combination of di-Higgs searches

- Channels included: bbbb, $bb\tau\tau$, $bb\gamma\gamma$
- Integrated luminosity: 36 fb-1

CMS combination

Electroweak fits

 But... are all the pieces of the SM fitting correctly???

Corrections to Electroweak observables

Electroweak observables are sensitive to masses of top quark and Higgs through radiative corrections
 h⁰

Sensitivity to Higgs mass is only logarithmic: Need ultra-precise measurements!

Precise measurements of electroweak observables can be used to constraint the Higgs boson mass or test internal coherence of the model!!

W boson mass measurement

ALEPH

DELPHI

L3

D0

ATLAS W⁺

ATLAS W

ATLAS W[±]

- High precision measurement
 Data from 2011 only!
- ➤ Consistency test of the SM

m_W, m_t, m_H

Long list of parameters used

• Best fit mass for Higgs boson:

 $M_H = 90^{+21}_{-18} \,\mathrm{GeV}$

- Compatible with observation within 1.7 σ

Future perspectives

Huge pile-up!!

• Will require upgraded detectors!!

High-Lumi LHC perspectives

- Uncertainties below 10% for most channels
- Continue to probe
 SM predictions
 or... find new physics!!

Conclusions

- The Higgs boson provides an optimal ground to probe the SM predictions and search for new physics!
- Outstanding performance of the LHC and the CMS and ATLAS detectors
 - Large increase in the available pp collisions
- A wealth of new results on SM Higgs boson studies
 - Main decay and production modes now observed in each experiment!!
 - Direct observation of the Higgs coupling to top and bottom quarks
 - Observation of VH, VBF production
- All results are compatible with SM predictions
- Searches for new physics and additional Higgs bosons continue
 - Much more data to come!

Acknowledgments

Backup

arXiv:1811.08856

ATLAS observation of $H \rightarrow \tau \tau$

- 13 different signal regions considering
 - Final state of the τ decays
 - VBF optimised category
 - Boosted H (p_Tττ>100 GeV) category, dominated by ggF

***** Run 1+Run2 combined significance: 6.4σ observed (5.4σ expected)

Search for ttH production

Direct probe of the top Yukawa coupling Very difficult channel: many possible final states, many particles, combinatorics,

Phys. Lett. B 784 (2018) 173

- Direct probe of the top Yukawa coupling
- Use all available final states:
 - ► H→bb, H→ $\gamma\gamma$, multi-leptons (H→ $\tau\tau$, H $H \rightarrow ZZ^* \rightarrow 4\ell$
- Combined Run 1 & Run 2 significance:
 - Expected: 5.1σ
 - Observed: 6.5 σ
- Dominant systematic uncertainties
 - ▶ tt+HF background in H→bb
 - Non-prompt/fake lepton in multi-lepton channel
 - Signal modelling
 - ▶ Jet energy scale

FÍSICA DE PARTÍCULAS Bosão de Higgs revela que relação mantém com o quark top

Investigadores portugueses participaram na descoberta.

PÚBLICO · 4 de Junho de 2018, 19:42

 $0.79\pm {}^{_{0.01}}_{_{0.60}}~(\pm {}^{_{0.23}}_{_{0.28}}~,\pm 0.53~)$ ttH (bb) $1.56 \pm 0.42 \ (\pm 0.30 \ ,\pm 0.30 \)$ ttH (multilepton) tīH (γγ) $1.39 \pm {}^{0.48}_{0.42}$ ($\pm {}^{0.42}_{0.38}$, $\pm {}^{0.23}_{0.17}$) tīH (ZZ) < 1 77 at 68% CI $1.32 \pm 0.28 \ (\pm 0.18 \ , \pm 0.21 \)$ Combined 2 3 0 -1 $\sigma_{\text{HL}} / \sigma_{\text{HL}}^{\text{SM}}$

418 PARTILHAS

f 💟 📀 🔂 (in 🖗

Data

Entrar

ttH (u=1.32)

5

(S/B)

ttH (u=1) Background