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Practicalities

Schedule: two lessons
Monday 16.03, 17h (this lesson)
Wednesday 18.03, 17h (unless you prefer e.g. Tuesday)

The slides contain links to a few exercises and examples
In a longer course there is time to go through them, not in two lessons
You are encouraged to play with the exercises offline

Many interesting references
Papers mostly in each slide
Some cool books after the summary slide of the second lesson

Unless stated otherwise, figures belong to P. Vischia, *****
(textbook to be published by Springer in 2021)

Your feedback is crucial for improving these lectures!
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Why statistics?
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Statistics is all about answering questions...

What is the chance of obtaining a 1 when throwing a six-faced die?

We can throw a dice 100 times, and count how many times we obtain 1

What is the chance of tomorrow being rainy?

We can try to give an answer based on the recent past weather, but we cannot – in general – repeat
tomorrow and count
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...and about making sure to be posing them in a meaningful way

Image from “The Tiger Lillies” Facebook page
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Where does statistics live

Theory
Approximations
Free parameters
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Statistics!

Estimate parameters
Quantify uncertainty in the
parameters estimate
Test the theory!

Experiment

Random fluctuations
Mismeasurements
(detector effects, etc)
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Fundaments
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What is a “probability”? — Kolmogorov and set theory

Ω: set of all possible elementary (exclusive) events Xi

Exclusivity: the occurrence of one event implies that
none of the others occur
Probability then is any function that satisfies the
Kolmogorov axioms:

P(Xi) ≥ 0, ∀i
P(Xi or Xj) = P(Xi) + P(Xj)∑

Ω P(Xi) = 1

Andrey Kolmogorov.
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What is a “probability”? — Cox and Jaynes

Cox theorem (1946): formalize a set of axioms starting from reasonable premises1

c ∗ b|a = F(c|b ∗ a, b|a)
∼ b|a = S(b|a), i.e. (b|a)m + (∼ b|a)m = 1

Cox theorem acts on propositions, Kolmogorov axioms on sets
Jaynes adheres to Cox’ exposition and shows that formally this is equivalent to Kolmogorov
theory

Kolmogorov axioms somehow arbitrary
A proposition referring to the real world cannot always be viewed as disjunction of propositions from
any meaningful set
Continuity as infinite states of knowledge rather than infinite subsets
Conditional probability not originally defined

1a|b = the occurrence of event a conditioned on the occurrence of event b
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Probability in the Theory of Measure — What’s a length?

Theory of probability originated in the context of games of chance

Mathematical roots in the theory of Lebesgue measure and set functions in Rn

Measure is something we want to define for an interval in Rn

1D: the usual notion of length
2D: the usual notion of area
3D: the usual notion of volume

Interval i = aν ≤ xν ≤ aν

L(i) =
n∏
ν=1

(bν − aν).

The length of degenerate intervals aν = bν is L(i) = 0; it does therefore not matter the interval is
closed, open, or half-open;
We set to +∞ the length of any infinite non-degenerate interval such as ]25,+∞] or [−∞, 2].

But do we connect different intervals?
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The Borel lemma and the additivity of length

In R1, an interval [a, b] has length:

L(i) = b− a

L(a, a) = 0

L(∞) =∞.

Disjoint intervals (no common point with any other)

i = i1 + ...+ in, (iµiν = 0 for µ 6= ν);

Define the sum as L(i) := L(i1) + ...+ L(in)
Extendable to an enumerable sequence of intervals (crucial for defining continuous density functions)

Borel lemma: we consider a finite closed interval [a, b] and a set of Z intervals such that
every point of [a, b] is an inner point of at least one interval belonging to Z.

Then there is a subset Z′ of Z containing only a finite number of intervals, such that every point of
[a, b] is an inner point of at least one interval belonging to Z′.

Generalizable to N dimensions, with L(i) additive function of i: i =
∑

in ⇒ L(i) =
∑

L(in)
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Measure and Length

L(i) is a non-negative additive function (finite- or infinite-valued): a measure
Definition extendable from intervals to complex sets:

L(S) ≥ 0
If S = S1 + ...+ Sn, where SµSν = 0 for µ 6= ν then L(S) = L(S1) + ...+ L(Sn)
If S is an interval i, then the set function L(S) reduces itself to the interval function L(i), L(S) = L(i)

True only for Borel sets
In layman’s terms, sets that can be constructed by taking countable unions or intersections (and their
respective complements) of open sets

L(S) is a measure and it’s called Lebesgue measure
The extension from L(i) to L(S) is unique (the only set function defined on the whole B1 satisfying the
properties above)
Extension to Rn is immediate: Ln(S)
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Set Fuctions and Point Functions

Generalization of Ln(S): the P-measure
1 P(S) is non-negative, P(S) ≥ 0;
2 P(S) is additive, P(S1 + ...+ Sn) = P(S1) + ...+ P(Sn) where SµSν = 0 for µ 6= ν;
3 P(S) is finite for any bounded set (crucial to define the usual probability in the domain [0, 1]

Associate to any P(S) a point function F(x) = F(x1, ..., xn)

F(x) = F(x1, ..., x : n) := P(ξ1 ≤ x1, ..., ξn ≤ xn).

Trivial in one dimension. P(S) must have an upper bound!
Map F(a) = F(b) to set of null P-measure, P(a < x ≤ b) = 0

F(x) is in each point a non-decreasing function everywhere-continuous to the right

P(a < x ≤ a + h) = ∆F(a) = F(a + h)− F(a),
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Distributions, finally!

Consider a class of non-negative additive set functions P(S) such that P(Rn) = 1; then

F(x) = F(x1, ..., xn) = P(ξ ≤ x1, ..., ξn ≤ xn)

0 ≤ F(x) ≤ 1

∆nF ≥ 0

F(−∞, x2, ..., xn) = ... = F(x1, ..., xn − 1,−∞) = 0

F(+∞, ...,+∞) = 1.

We interpret P(S) and F(x) as distribution of a unit of mass over Rn

Each Borel set carries the mass P(S)
Interpret (x as the quantity of mass allotted to the infinite interval (ξ1 ≤ x1, ..., ξn ≤ xν).
Defining the measure in terms of P(S) or F(x) is equivalent

Usually P(S) is called probability function, and F(x) is called distribution function
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What about individual points?

What about individual points?
Discrete mass point a; a point such that the set {x = a} carries a positive quantity of mass.

P(S) = c1P1(S) + c2P2(S)

or

F(x) = c1F1(x) + c2F2(x)

where

cν ≥ 0, c1 + c2 = 1,

c1: component with whole mass concentrated in discrete mass points. c2: component with no discrete
mass points
c1 = 1, c2 = 0: F(x) is a step function, where the whole mass is concentrated in the discontinuity
points
c1 = 0, c2 = 1, then if n = 1 then F(x) is everywhere continuous, and in any dimension no single
mass point carries a positive quantity of mass.
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Probability density

Consider the n-dimensional interval i = {xν − hν < ξν ≤ xν + hν ; ν = 1, ..., n}
Average density of mass: the ratio of the P-measure of the interval—expressed in terms of
the increments of the point function—to the L-measure of the interval itself

P(i)
L(i)

=
∆nF

2nh1h2...hn
.

If partial derivatives f (x1, ..., xn) = ∂nF
∂x1...∂xn

exist, then P(i)
L(i) → f (x1, ..., xn) for hν → 0

Density of mass at the point x
f is referred to as probability density or frequency function
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Marginal distributions

Take a distribution function F(x1, ..., xn)

Let xµ →∞, µ 6= ν

It can be shown that F → Fν(xν), and that itself is a distribution function in the variable xν
e.g. F1(x1) = F(x1,+∞, ...,+∞).

Fν(xν) is one-dimensional, and is called the marginal distribution of xν .
It can be obtained by projection starting from the n−dimensional distribution
Shift each “mass particle” along the perpendicular direction to xν until collapsing into the xν axis
This results in a one-dimensional distribution which is the marginal distribution of xν .
There are infinite ways of arriving to the same xν starting from a generic n-dimensional distribution
function

Marginal distributions can be also built with respect to subsets of variables.
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Random experiment
Repeat a random experiment ξ (e.g. toss of a die) many times under uniform conditions

As uniform as possible
~S: set of all a priori possible different results of an individual measurement
S: a fixes subset of~S

If in an experiment we obtain ξ ∈ S, we will say the event defined by ξ ∈ S has occurred
We assume that S is simple enough that we can tell whether ξ is in it or not

Throw a die: ~S = {1, 2, 3, 4, 5, 6}
If S = {2, 4, 6}, then ξ ∈ S corresponds to the event in which you obtain an even number of points

Repeat the experiment: among n repetitions the event has occurred ν times
Then ν

n is the frequency ratio of the event in the sequence of n experiments

EXERCISE: For a fixed event, how does the frequency ratio behave for increasing n?
wget https://raw.githubusercontent.com/vischia/statex/master/frequencyRatio.ipynb
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Frequentist probability - 1

The most familiar one: based on the possibility of repeating an experiment many times

Consider one experiment in which a series of N events is observed.

n of those N events are of type X

Frequentist probability for any single event to be of type X is the empirical limit of the
frequency ratio:

P(X) = limN→∞
n
N
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Frequentist probability - 2

The experiment must be repeatable in the same conditions
The job of the physicist is making sure that all the relevant conditions in the experiments are
the same, and to correct for the unavoidable changes.

Yes, relevant can be a somehow fuzzy concept

In some cases, you can directly build the full table of frequencies (e.g. dice throws, poker)

What if the experiment cannot be repeated, making the concept of frequency ill-defined?
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Subjective (Bayesian) probability

Based on the concept of degree of belief
P(X) is the subjective degree of belief on X being true

De Finetti: operative definition of subjective probability, based on the concept of coherent bet
We want to determine P(X); we assume that if you bet on X, you win a fixed amount of money if X
happens, and nothing (0) if X does not happen
In such conditions, it is possible to define the probability of X happening as

P(X) :=
The largest amount you are willing to bet

The amount you stand to win
(1)

Coherence is a crucial concept
You can leverage your bets in order to try and not loose too much money in case you are wrong
Your bookie is doing a Dutch book on you if the set of bets guarantees a profit to him
A bet is coherent if a Dutch book is impossible

This expression is mathematically a Kolmogorov probability!
Subjective probability is a property of the observer as much as of the observed system

It depends on the knowledge of the observer prior to the experiment, and is supposed to change
when the observer gains more knowledge (normally thanks to the result of an experiment)

Book Odds Probability Bet Payout
Trump elected Even (1 to 1) 1/(1 + 1) = 0.5 20 20 + 20 = 40
Clinton elected 3 to 1 1/(1 + 3) = 0.25 10 10 + 30 = 40

0.5 + 0.25 = 0.75 30 40
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Conditional probabilities: Bayes theorem

Probabilities can be combined to obtain more complex expressions
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A word of advice about conditional probabilities

Conditional probabilities are not commutative! P(A|B) 6= P(B|A)

Example:
A: speaking English
B: having a TOEFL certificate

The probability for an English speaker to have a TOEFL certificate,
P(have TOEFL|speak English), is very small (say ∼ 1% very roughly)

The probability for a TOELF certificate holder to speak English,
P(speak English|have TOEFL), is unarguably >>>>> 3% ,
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A trickier example of conditional probability: the Monty Hall problem

Suppose you’re on a game show, and you’re given the choice of three doors
Behind one door is a car;
behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another
door, say No. 3, which has a goat.

He then says to you, “Do you want to pick door No. 2?”

Is it to your advantage to switch your choice?

EXERCISE: build a small simulation to check your answer!

The best strategy is to always switch!
The key is the presenter knows where the car is→ he opens different doors

The picture would be different if the presenter opened the door at random

Behind 1 Behind 2 Behind 3 If you keep 1 If you switch Presenter opens
Car Goat Goat Win car Win goat 2 or 3

Goat Car Goat Win goat Win car 3
Goat Goat Car Win goat Win car 2
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Bayes Theorem and the Law of Total Probability

Bayes Theorem (1763):

P(A|B) :=
P(B|A)P(A)

P(B)
(2)

Valid for any Kolmogorov probability

The theorem can be expressed also by first starting from a subset B of the space

Decomposing the space S in disjoint sets Ai (i.e. ∩AiAj = 0∀i, j), ∪iAi = S an expression can
be given for B as a function of the Ais, the Law of Total Probability:

P(B) =
∑

i

P(B ∩ Ai) =
∑

i

P(B|Ai)P(Ai) (3)

where the second equality holds only for if the Ais are disjoint

Finally, the Bayes Theorem can be rewritten using the decomposition of S as:

P(A|B) :=
P(B|A)P(A)∑
i P(B|Ai)P(Ai)

(4)
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A Diagnosis problem

The Bayes theorem permits to “invert” conditional probabilities, and can be applied to any
Kolmogorov probability, therefore in particular to both frequentist and Bayesian defintions
Let’s consider a mortal disease, and label the possible states of the patients

D: the patient is diseased (sick)
H: the patient is healthy

Let’s imagine we have devised a diagnostic test, characterized by the possible results
+: the test is positive to the disease
-: the test is negative to the disease

Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false
positives percentage is very low: P(+|H) = 0.01

You take the test, and the test is positive. Do you have the disease?

By the Bayes Theorem:

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
(5)

We need the incidence of the disease in the population, P(D)! It turns out P(D) is a very
important to get our answer

P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.4977, which is pretty high (and
substantially higher than the previous one)
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Bayes Theorem and Subjective Probability

Frequentist and Subjective probabilities differ in the way of interpreting the probabilities that
are written within the Bayes Theorem
Frequentist: probability is associated to sets of data (i.e. to results of repeatable experiments)

Probability is defined as a limit of frequencies
Data are considered random, and each point in the space of theories is treated independently
An hypothesis is either true or false; improperly, its probability can only be either 0 or 1. In general,
P(hypothesis) is not even defined
“This model is preferred” must be read as “I claim that there is a large probability that the data that I
would obtain when sampling from the model are similar to the data I already observed” fix
We can only write about P(data|model)

Bayesian statistics: the definition of probability is extended to the subjective probabilty of
models or hypotheses:

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(6)
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The elements of the Bayes Theorem, in Bayesian Statistics

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(7)

~X, the vector of observed data
P(~X|H), the likelihood function, which fully summarizes the result of the experiment
(experimental resolution)
π(H), the probability of the hypothesis H. It represents the probability we associate to H
before we perform the experiment
P(~X), the probability of the data.

Since we already observed them, it is essentially regarded as a normalization factor
Summing the probability of the data for all exclusive hypotheses (by the Law of Total Probability),∑

i P(~X|Hi) = 1 (assuming that at least one Hi is true).
Usually, the denominator is omitted and the equality sign is replaced by a proporcionality sign

P(H|~X) ∝ P(~X|H)π(H) (8)

P(H|~X), the posterior probability; it is obtained as a result of an experiment
If we parameterize H with a (continuous or discrete) parameter, we can use the parameter as
a proxy for H, and instead of writing P(H(θ)) we write P(θ) and

P(θ|~X) ∝ P(~X|θ)π(θ) (9)

The simplified expression is usually used, unless when the normalization is necessary
“Where is the value of θ such that θtrue < θc with 95% probability?”; integration is needed and the
normalization is necessary
“Which is the mode of the distribution?”; this is independent of the normalization, and it is therefore
not necessary to use the normalized expression
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Choosing a prior in Bayesian statistics; in theory... 1/

There is no golden rule for choosing a prior
Objective Bayesian school: it is necessary to write a golden rule to choose a prior

Usually based on an invariance principle

Consider a theory parameterized with a parameter, e.g. the ratio of vacuum expectation
values v in a quantum field theory, β := v1

v2

Before any experiment, we are Jon Snow about the parameter β: we know nothing
We have to choose a very broad prior, or better uniform, in β

Now we interact with a theoretical physicist, who might have built her theory by using as a
parameter of the model the tanged of the ratio, tanβ

In a natural way, she will express her pre-experiment ignorance using an uniform prior in tanβ.
This prior is not constant in β!!!
In general, there is no uniquely-defined prior expressing complete ignorance or ambivalence in both
parameters (β and tanβ)

We can build a prior invariant for transformations of the parameter, but this means we have to
postulate an invariance principle

The prior already deviates from our degree of belief about the parameter (“I know nothing”)
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Choosing a prior in Bayesian statistics; in theory... 2/

Two ways of solving the situation
Objective Bayes: use a formal rule dictated by an invariance principle
Subjective Bayes: use something like elicitation of expert opinion

Ask an expert her opinion about each value of θ, and express the answer as a curve
Repeat this with many experts
100 years later check the result of the experiments, thus verifying how many experts were right, and re-calibrate
your prior
This corresponds to a IF-THEN proposition: “IF the prior is π(H), THEN you have to update it afterwards, taking
into account the result of the experiment”

Central concept: update your priors after each experimient

Vischia Statistics for HEP, LIP Lisboa LHC Course 2020 March 16th and 18th, 2020 31 / 122



Choosing a prior in Bayesian statistics; in practice... 1/

In particle physics, the typical application of Bayesian statistics is to put an upper limit on a
parameter θ

Find a value θc such that P(θtrue < θc) = 95%

Typically θ represents the cross section of a physics process, and is proporcional to a variable
with a Poisson p.d.f.

An uniform prior can be chosen, eventually restricted to θ ≥ 0 to account for the physical
range of θ
We can write priors as a function of other variables, but in general those variables will be
linked to the cross section by some analytic transformation

A prior that is uniforme in a variable is not in general uniform in a transformed variable; a uniform prior
in the cross section implies a non-uniform prior (not even linear) on the mass of the sought particle

In HEP, usually the prior is chosen uniform in the variable with the variable which is
proporcional to the cross section of the process sought
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Choosing a prior in Bayesian statistics; in practice... 2/

Uniform priors must make sense
Uniform prior across its entire dominion: not very realistic
It corresponds to claimng that P(1 < θ ≤ 2) is the same as P(1041 < θ ≤ 1041 + 1)
It’s irrational to claim that a prior can cover uniformly forty orders of magnitude
We must have a general idea of “meaningful” values for θ, and must not accept results forty orders of
magnitude above such meaningful values

A uniform prior often implies that its integral is infinity (e.g. for a cross section, the dominion
being [0,∞]

Achieving a proper normalization of the posterior probability would be a nightmare

In practice, use a very broad prior that falls to zero very slowly but that is practically zero
where the parameter cannot meaningfully lie

This does not guarantee that it integrates to 1—it depends on the speed of convergence to zero
Improper prior
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Choosing a prior in Bayesian statistics; in practice... 3/
Associating parametric priors to intervals in the parameter space corresponds to considering
sets of theories

This is because to each value of a parameter corresponds a different theory
In practical situations, note (Eq. 9) posterior probability is always proportional to the product
of the prior and the likelihood

The prior must not necessarily be uniform across the whole dominion
It should be uniform only in the region in which the likelihood is different from zero

If the prior π(θ) is very broad, the product can sometimes be approximated with the
likelihood, P(~X|θ)π(H) ∼ P(~X|θ)

The likelihood function is narrower when the data are more precise, which in HEP often translates to
the limit N →∞
In this limit, the likelihood is always dominant in the product
The posterior is indipendent of the prior!
The posteriors corresponding to different priors must coincide, in this limit
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Flat prior
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Broad vs narrow non-flat priors
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Broad prior and narrow-vs-peaked likelihood
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Short summary on bayesian vs. frequentist

Frequentists are restricted to statements related to
P(data|theory) (kind of deductive reasoning)
The data is considered random
Each point in the “theory” phase space is treated independently (no notion of probability in the
“theory” space)
Repeatable experiments

Bayesians can address questions in the form
P(theory|data) ∝ P(data|theory)× P(theory) (it is intuitively what we normally would like to know)
It requires a prior on the theory
Huge battle on subjectiveness in the choice of the prior goes here - see §7.5 of James’ book
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Drawing some histograms
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Random Variables

Random variable: a numeric label for each element in the space of data (in frequentist
statistics) or in the space of the hypotheses (in Bayesian statistics)
In Physics, usually we assume that Nature can be described by continuous variables

The discreteness of our distributions would arise from scanning the variable in a discrete way
Experimental limitations in the act of measuring an intrinsically continuous variable)

Instead of point probabilities we’ll work with probabilities defined in intervals, normalized w.r.t.
the interval:

f (X) := lim
∆X→0

P(X)

∆X
(10)

Dimensionally, they are densities and they are called probability density functions (p.d.f. s)

Inverting the expression, P(X) =
∫

f (X)dX and we can compute the probability of an interval
as a definite interval

P(a < X < b) :=

∫ b

a
f (X)dX (11)
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p.d.f. for many variables

Extend the concept of p.d.f. to an arbitrary number of variables; the joint p.d.f. f (X, Y, ...)

If we are interested in the p.d.f. of just one of the variables the joint p.d.f. depends upon, we
can compute by integration the marginal p.d.f.

fX(X) :=

∫
f (X, Y)dY (12)

Sometimes it’s interesting to express the joint p.d.f. as a function of one variable, for a
particular fixed value of the others: this is the conditional p.d.f. :

f (X|Y) :=
f (X, Y)

fY(Y)
(13)
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Dispersion and distributions

Repeated experiments usually don’t yield the exact same result even if the physical quantity
is expected to be exactly the same

Random changes occur because of the imperfect experimental conditions and techniques
They are connected to the concept of dispersion around a central value

When repeating an experiment, we can count how many times we obtain a result contained in
various intervals (e.g. how often 1.0 ≤ L < 1.1, how often 1.1 ≤ L < 1.2, etc)

An histogram can be a natural way of recording these frequencies
The concept of dispersion of measurements is therefore related to that of dispersion of a distribution

In a distribution we are usually interested in finding a “central” value and how much the
various results are dispersed around it

Vischia Statistics for HEP, LIP Lisboa LHC Course 2020 March 16th and 18th, 2020 42 / 122



Sources of uncertainty (errors?)

Two fundamentally different kinds of uncertainties
Error: the deviation of a measured quantity from the true value (bias)
Uncertainty: the spread of the sampling distribution of the measurements

Random (statistical) uncertainties
Inability of any measuring device (and scientist) to give infinitely accurate answers
Even for integral quantities (e.g. counting experiments), fluctuations occur in observations on a small
sample drawn from a large population
They manifest as spread of answers scattered around the true value

Systematic uncertainties
They result in measurements that are simply wrong, for some reason
They manifest usually as offset from the true value, even if all the individual results can be consistent
with each other
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Expected values of a random variable

We define the expected value and mathematical expectation

E[X] :=

∫
Ω

Xf (X)dX (14)

In general, for each of the following formulas (reported for continuous variables) there is a
corresponding one for discrete variables, e.g.

E[X] :=
∑

i

XiP(Xi) (15)
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Generalizing expected values to functions of random variables

Extend the concept of expected value to a generic function g(X) of a random variable

E[g] :=

∫
Ω

g(X)f (X)dX (16)

The previous expression Eq. 14 is a special case of Eq. 16 when g(X) = X

The mean of X is:
µ := E[X] (17)

The variance of X is:
V(X) := E[(X − µ)2] = E[X2]− µ2 (18)

Mean and variance will be our way of estimating a “central” value of a distribution and of the
dispersion of the values around it
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Let’s make it funnier: more variables!
Let our function g(X) be a function of more variables, ~X = (X1,X2, ...,Xn) (with p.d.f. f (~X))

Expected value: E(g(~X)) =
∫

g(~X)f (~X)dX1dX2...dXn = µg

Variance: V[g] = E
[
(g− µg)

2] =
∫

(g(~X)− µg)
2f (~X)dX1dX2...dXn = σ2

g

Covariance: of two variables X, Y:
VXY = E

[
(X − µX)(Y − µY)

]
= E[XY]− µXµY =

∫
XYf (X, Y)dXdY − µXµY

It is also called “error matrix”, and sometimes denoted cov[X, Y]

It is symmetric by construction: VXY = VYX , and VXX = σ2
X

To have a dimensionless parameter: correlation coefficient ρXY =
VXY
σXσY

VXY is the expectation for the product of
deviations of X and Y from their means

If having X > µX enhances P(Y > µY), and
having X < µX enhances P(Y < µY), then
VXY > 0: positive correlation!
ρXY is related to the angle in a linear
regression of X on Y (or viceversa)

It does not capture non-linear correlations
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Take it to the next level: the Mutual Information
Covariance and correlation coefficients act taking into account only linear dependences
Mutual Information is a general notion of correlation, measuring the information that two
variables X and Y share

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p1(x)p2(y)

)
Symmetric: I(X; Y) = I(Y; X)
I(X; Y) = 0 if and only if X and Y are totally independent

X and Y can be uncorrelated but not independent; mutual information captures this!
Related to entropy

I(X; Y) = H(X)− H(X|Y)

= H(Y)− H(Y|X)

= H(X) + H(Y)− H(X, Y)
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Does cholesterol increase with exercise?
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Does it, though?
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Should we prescribe the drug?

If we know the gender, then prescribe the drug

If we don’t know the gender, then don’t prescribe the drug

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Imagine we know that estrogen has a negative effect on recovery
Then women less likely to recovery than men
Table shows women are significantly more likely to take the drug
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Should we prescribe the drug?

BP = Blood Pressure
No drug Drug

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Same table, different labels; here we must consider the combined data
Lowering blood pressure is actually part of the mechanism of the drug effect
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The Simpson paradox: correlation is not causation

Correlation alone can lead to nonsense conclusions
If we know the gender, then prescribe the drug
If we don’t know the gender, then don’t prescribe the
drug

Imagine we know that estrogen has a negative effect
on recovery

Then women less likely to recovery than men
Table shows women are significantly more likely to take
the drug

Here we should consult the separate data, in order
not to mix effects
Same table, different labels; must consider the
combined data

Lowering blood pressure is actually part of the
mechanism of the drug effect

Same effect in continuous data (cholesterol vs age)

Bayesian causal networks

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

No drug Drug
Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)
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Distributions... or not?

HEP uses histograms mostly historically: counting experiments
Statistics and Machine Learning communities typically use densities

Intuitive relationship with the underlying p.d.f.
Kernel density estimates: binning assumption→ bandwidth assumption
Less focused on individual bin content, more focused on the overall shape
More general notion (no stress about the limited bin content in tails)

In HEP, if your events are then used “as counting experiment” it’s more useful the histogram
But for some applications (e.g. Machine Learning) even in HEP please consider using density
estimates

Plots from TheGlowingPython and TowardsDataScience
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The Binomial distribution

Binomial
Discrete variable: r, positive integer ≤ N
Parameters:

N, positive integer
p, 0 ≤ p ≤ 1

Probability function:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N

E(r) = Np, V(r) = Np(1− p)
Usage: probability of finding exactly r
successes in N trials. The distribution of the
number of events in a single bin of a
histogram is binomial (if the bin contents are
independent)
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p=0.3, N=20
p=0.7, N=20
p=0.5, N=40

Example: which is the probability of obtaining 3 times the number 6 when throwing a 6-faces
die 12 times?

N = 12, r = 3, p = 1
6

P(3) =
(12

3

)( 1
6

)3
(1− 1

6 )12−3 = 12!
3!9!

1
63

(
5
6

)9
= 0.1974
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The Poisson distribution

Poisson
Discrete variable: r, positive integer
Parameter: µ, positive real number

Probability function: P(r) = µre−µ
r!

E(r) = µ, V(r) = µ
Usage: probability of finding exactly r events
in a given amount of time, if events occur at a
constant rate.

Example: is it convenient to put an
advertising panel along a road?
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µ=1
µ=5
µ=15

Probability that at least one car passes through the road on each day, knowing on average 3
cars pass each day

P(X > 0) = 1− P(0), and use Poisson p.d.f.

P(0) =
30e−3

0!
= 0.049787

P(X > 0) = 1− 0.049787 = 0.95021.

Now suppose the road serves only an industry, so it is unused during the weekend; Which is
the probability that in any given day exactly one car passes by the road?

Navg per dia =
3
5

= 0.6

P(X) =
0.61e−0.6

1!
= 0.32929
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The Gaussian distribution

Gaussian or Normal distribution
Variable: X, real number
Parameters:

µ, real number
σ, positive real number

Probability function:

f (X) = N(µ, σ2) = 1
σ
√

2π
exp
[
− 1

2
(X−µ)2

σ2

]
E(X) = µ, V(X) = σ2

Usage: describes the distribution of
independent random variables. It is also the
high-something limit for many other
distributions
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The χ2 distribution

Parameter: integer N > 0 degrees of
freedom

Continuous variable X ∈ R
p.d.f., expected value, variance

f (X) =
1
2

( X
2

) N
2 −1e−

X
2

Γ
(N

2

)
E[r] = N

V(r) = 2N

It describes the distribution of the sum of the
squares of a random variable,

∑N
i=1 X2
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Reminder: Γ() := N!
r!(N−r)!
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The χ2 distribution: why degrees of freedom?
Sample randomly from a Gaussian p.d.f., obtaining X1 y X2
Q = X2

1 + X2
2 (or in general Q =

∑N
i=1 X2

i ) is itself a random variable
What is P(Q ≥ 6)? Just integrate the χ2(N = 2) distribution from 6 to∞

Depends only on N!
If we sample 12 times from a Gaussian and compute Q =

∑12
i=1 X2

i , then Q ∼ χ2(N = 12)

Theorem: if Z1, ..., ZN is a sequence of normal random variables, the sum V =
∑N

i=1 Z2
i is

distributed as a χ2(N)
The sum of squares is closely linked to the variance E[(X − µ)2] = E[X2]− µ2 from Eq. 18

The χ2 distribution is useful for goodness-of-fit tests that check how much two distributions
diverge point-by-point
It is also the large-sample limit of many distributions (useful to simplify them to a single
parameter)
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The χ2 distribution: goodness-of-fit tests 1/
Consider a set of M measurements {(Xi, Yi)}

Suppose Yi are affected by a random error representable by a gaussian with variance σi

Consider a function g(X) with predictive capacity, i.e. such that for each i we have g(Xi) ∼ Yi
Pearson’s χ2 function related to the difference between the prediction and the experimental
measurement in each point

χ2
P :=

M∑
i=1

[
Yi − g(Xi)

σi

]2

(19)

Neyman’s χ2 is a similar expression under some assumptions
If the gaussian error on the measurements is constant, it can be factorized
If Yi represent event counts Yi = ni, then the errors can be approximated with σi ∝

√
ni

χ2
N :=

M∑
i=1

(
ni − g(Xi)

)2

ni
(20)
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The χ2 distribution: goodness-of-fit tests 2/
If g(Xi) ∼ Yi (i.e. g(X) reasonably predicts the data), then each term of the sum is
approximately 1
Consider a function of χ2

N,P and of the number of measurements M
E[f (χ2

N,P,M)] = M
The function is analytically a χ2:

f (χ2
,M) =

2−
M
2

Γ
(

N
2

)χN−2e−
χ2
2 (21)

The cumulative of f is

1− cum(f ) = P(χ
2
> χ

2
obs|g(x) is the correct model) (22)

Comparing χ2 with the number of degrees of freedom M, we therefore have a criterion to test
for goodness-of-fit

For a given M, the p.d.f. is known (χ2(M)) and the observed value can be computed and compared
with it
Null hypothesis: there is no difference between prediction and observation (i.e. g fits well the data)
Alternative hypothesis: there is a significant difference between prediction and observation
Under the null, the sum of squares is distributed as a χ2(M)

p-values can be calculated by integration of the χ2 distribution
χ2

M
∼ 1⇒ g(X) approximates well the data

χ2

M
>> 1⇒ poor model (increases χ2), or statistically improbable fluctuation

χ2

M
<< 1⇒ overestimated σi, or fraudulent data, or statistically improbable fluctuation

(23)
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The χ2 distribution: goodness-of-fit tests 3/

χ2(M) tends to a Normal distribution for M →∞
Slow convergence
It is generally not a good idea to substitute a χ2 distribution with a Gaussian

The goodness of fit seen so far is valid only if the model (the function g(X)) is fixed

Sometimes the model has k free parameters that were not given and that have been fit to the
data
Then the observed value of χ2 must be compared with χ2(N′), with N′ = N − k degrees of
freedom

N′ = N − k are called reduced degrees of freedom
This however works only if the model is linear in the parameters
If the model is not linear in the parameters, when comparing χ2

obs with χ2(N − k) then the p-values
will be deceptively small!

Variant of the χ2 for small datasets: the G-test
g = 2

∑
Oijln(Oij/Eij)

It responds better when the number of events is low (Petersen 2012)
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Some relationships among distributions

It is often convenient to know the asymptotic properties of the various distributions
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Estimating a physical quantity
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Information, the Fisher way

The information of a set of observations should increase with the number of observations
Double the data should result in double the information if the data are independent

Information should be conditional on what we want to learn from the experiment
Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis

Information should be related to precision
The greatest the information carried by the data, the better the precision of our result
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The Likelihood Principle — 1

Common enunciation: given a set of observed data~x, the likelihood function L(~x; θ) contains
all the information that is relevant to the estimation of the parameter θ contained in the data
sample

The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed
data~x
The likelihood is used to define the information contained in a sample

Bayesian statistics automatically satisfies it
P(θ|~x) ∝ L(~x; θ)× π(θ): the only quantity depending on the dats is the likelihood
Information as a broad way of saying all the possible inferences about θ
“Probably tomorrow will rain”

Frequentist statistics: information more strictly as Fisher information (connection with
curvature of L(~x; θ))

Usually does not comply (have to consider the hypothetical set of data that might have been obtained)
Need to recast question in terms of hypotetical data
Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of
correct forecasts by the grandpa feeling arthritis in the shoulder
“The sentence -tomorrow it will rain- is probably true”

The Likelihood Principle is quite vague: no practical prescription for drawing inference from
the likelihood

Bayesian Maximum a-posteriori (MAP) estimator automatically maximizes likelihood
Maximum Likelihood estimator (MLE) maximizes likelihood automatically, but some foundational
issues
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The Likelihood Principle — 2

Two likelihoods differing by only a normalization factor are equivalent
Implies that information resides in the shape of the likelihood

George Bernard: replace a dataset D with a dataset D + Z, where Z is the result of tossing a
coin

Assume that the coin toss is independent on the parameter θ you seek to determine
Sampling probability: p(DZ|θ) = p(D|θ)p(Z)
The coin toss tells us nothing about the parameter θ beyond what we already learn by considering D
only
Any inference we do with D must therefore be the same as any inference we do with D + Z
In particular, normalizations cancel out in ratio: L1

L2
=

p(DZ|θ1 I)
p(DZ|θ2 I) =

p(D|θ1 I)
p(D|θ2 I)

Do you believe probability comes from the imperfect knowledge of the observer?
Then the likelihood principle does not seem too profound besides the mathematical simplifications it
allows

Do you believe that probability is a physical phaenomenon arising from randomness?
Then the likelihood principle has for you a profound meaning of valid principle of inference
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Likelihood and Fisher Information

The narrowness of the likelihood can be estimated by looking at its curvature

The curvature is the second derivative with respect to the parameter of interest

A very narrow (peaked) likelihood is characterized by a very large and positive − ∂
2lnL
∂θ2

The second derivative of the likelihood is linked to the Fisher Information

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
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Likelihood and Fisher Information

A very narrow likelihood will provide much information about θtrue

The posterior probability will be more localized than the prior in the regimen in which the likelihood
function dominates the product L(~x; ~θ)× π
The Fisher Information will be large

A very broad likelihood will not carry much information, and in fact the computed Fisher
Information will turn out to be small

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Broad prior vs narrow prior

θ

Li
ke

lih
oo

d 
(a

.u
.)

Likelihood
Prior
Posterior

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Broad prior vs narrow prior

θ

Li
ke

lih
oo

d 
(a

.u
.)

Likelihood
Prior
Posterior

Vischia Statistics for HEP, LIP Lisboa LHC Course 2020 March 16th and 18th, 2020 68 / 122



Fisher Information and Jeffreys priors
When changing variable, the change of parameterization must not result in a change of the
information

The information is a property of the data only, through the likelihood—that summarizes them
completely (likelihood principle)

Search for a parametrization θ′(θ) in which the Fisher Information is constant
Compute the prior as a function of the new variable

π(θ) = π(θ′)
∣∣∣ dθ′

dθ

∣∣∣ ∝
√√√√E

[(
∂lnN
∂θ′

)2]∣∣∣∣∣∂θ′∂θ
∣∣∣∣∣

=

√√√√E

[(
∂lnL
∂θ′

∂θ′

∂θ

)2]

=

√√√√E

[(
∂lnL
∂θ

)2]
=
√

I(θ)

For any θ, π(θ) =
√

I(θ); with this choice, the information is constant under changes of
variable
Such priors are called Jeffreys priors, and assume different forms depending on the type of
parametrization

Location parameters: uniform prior
Scale parameters: prior ∝ 1

θ

Poisson processes: prior ∝ 1√
θ
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Sufficient statistic and data reduction

A test statistic is a function of the data (a quantity derived from the data sample)
A statistic T = T(X) is sufficient for θ if the density function f (X|T) is independent of θ

If T is a sufficient statistic for θ, then also any strictly monotonic g(T) is sufficient for θ

The statistic T carries as much information about θ as the original data X
No other function can give any further information about θ
Same inference from data X with model M and from sufficient statistic T(X) with model M′
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Example: is it sufficient?

Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) x̂ = 1+2+3+4+5
5 = 3

Imagine we don’t have the data; we only know that the sample mean is 3
Is the sample mean a sufficient statistic?

Since the sample mean is 3, we also estimate the population mean to be 3
Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our
estimate for the population mean

Binomial test in coin toss

Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
Can we somehow improve by identifying a sufficient statistic?
What happens if we record only the number of heads? (remember that the binomial p.d.f. is:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N

Recording only the number of heads (no tails, no order) gives exactly the same information
Data can be reduced; we only need to store a sufficient statistic
Storage needs are reduced
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Ancillary statistic and pivotal quantities

Pivotal quantity: its distribution does not depend on the
parameters

For a Gaussian(µ, σ2) p.d.f., X̄−µ
S/
√

N
∼ tstudent is a pivot

Ancillary statistic for a parameter θ: a statistic f (X) which does not depend on θ
Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all
Fisher information about θ

An ancillary statistic can give information about θ even if it does not depend on it!
Sample X1 and X2 from Pθ(X = θ) = Pθ(X = θ + 1) = Pθ(X = θ + 2) = 1

3
Ancillary statistic: R := X2 − X1 (no information about θ)
Minimal sufficient statistic: M :=

X1+X2
2

Sample point (M = m, R = r): either θ = m, or θ = m− 1, or θ = m− 2
If R = 2, then necessarily X1 = m− 1 and X2 = m− 2; Therefore necessarily θ = m− 1

Knowledge of R alone carries no information on θ, but increases the precision on an estimate
of θ (Cox, Efron, Hinckley)!
Powerful tool to improve data reduction capabilities (save money...)
Also employed for asymptotic likelihood expressions

Also impact on approximate expressions for significance (evolution of
my proceedings in preparation as paper
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Estimators

Set~x = (x1, ..., xN) of N statistically independent observations xi, sampled from a p.d.f. f (x).

Mean and width of f (x) (or some parameter of it: f (x; ~θ), with ~θ = (θ1, ..., θM) unknown)
In case of a linear p.d.f., the vector of parameters would be ~θ = (intercept, slope)

We call estimator a function of the observed data~x which returns numerical values ~̂θ for the
vector ~θ.

~̂θ is (asymptotically) consistent if it converges to ~θtrue
for large N:

lim
N→∞

~̂θ = ~θtrue

~̂θ is unbiased if its bias is zero, ~b = 0

Bias of ~̂θ: ~b := E[~̂θ]− ~θtrue

If bias is known, can redefine ~̂θ′ = ~̂θ −~b, resulting in
~b′ = 0.

~̂θ is efficient if its variance V[~̂θ] is the smallest possible Plot from James, 2nd ed.

An estimator is robust when it is insensitive to small deviations from the underlying
distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without
assumptions on the underlying p.d.f.)



The Maximum Likelihood Method 1/
Let~x = (x1, ..., xN) be a set of N statistically independent observations xi, sampled from a
p.d.f. f (x; ~θ) depending on a vector of parameters
Under independence of the observations, the likelihood function factorizes to the individual
p.d.f. s

L(~x; ~θ) =
N∏

i=1

f (xi, ~θ)

The maximum-likelihood estimator is the ~θML which maximizes the joint likelihood

~θML := argmaxθ
(

L(~x, ~θ)
)

The maximum must be global
Numerically, it’s usually easier to minimize

− lnL(~x; ~θ) = −
N∑

i=1

lnf (xi, ~θ)

Easier working with sums than with products
Easier minimizing than maximizing

If the minimum is far from the range of permitted values for ~θ, then the minimization can be
performed by finding solutions to

−
lnL(~x; ~θ)

∂θj
= 0

It is assumed that the p.d.f. s are correctly normalized, i.e. that
∫

f (~x; ~θ)dx = 1 (→ integral does not
depend on ~θ)
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The Maximum Likelihood Method 2/

Solutions to the likelihood minimization are found via numerical methods such as MINOS
Fred James’ Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html

~θML is an estimator→ let’s study its properties!
1 Consistent: limN→∞ ~θML = ~θtrue;
2 Unbiased: only asymptotically. ~b ∝ 1

N , so~b = 0 only for N →∞;
3 Efficient: V[~θML] = 1

I(θ)

4 Invariant: for change of variables ψ = g(θ); ψ̂ML = g(~θML)

~θML is only asymptotically unbiased, and therefore it does not always represent the best
trade-off between bias and variance

Remember that in frequentist statistics L(~x; ~θ) is not a p.d.f. . In Bayesian statistics, the
posterior probability is a p.d.f.:

P(~θ|~x) =
L(~x|~θ)π(~θ)∫
L(~x|~θ)π(~θ)d~θ

Note that if the prior is uniform, π(~θ) = k, then the MLE is also the maximum of the posterior
probability, ~θML = maxP(~θ|~x).
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Nuclear Decay with Maximum Likelihood Method

A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

f (t; τ) =
1
τ

e−
t
τ

E[f ] = τ

V[f ] = τ 2

Sampling N independent measurements ti from the same p.d.f. results in a set of
measurements identically distributed
Exercise: compute the MLE for this p.d.f.

The joint p.d.f. can be factorized

f (t1, ...tN ; τ) =
∏

i

f (ti; τ)

For a particular set of N measurements ti, the p.d.f. can be written as a function of τ only,
L(τ) := f (ti; τ)

Now all you need to do is to maximize the likelihood

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti
τ

)
, can be maximized analytically

∂lnL(τ)

∂τ
=
∑

i

(
−

1
τ

+
ti
τ 2

)
≡ 0
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?

The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient?
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistente Insesgado Eficiente

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient?

The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistente Insesgado Eficiente

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:
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τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
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τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.

Vischia Statistics for HEP, LIP Lisboa LHC Course 2020 March 16th and 18th, 2020 78 / 122



Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient?
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistente Insesgado Eficiente

τ̂ = τ̂ML = t1+...+tN
N 3 3 3

τ̂ = t1+...+tN
N−1 3 7 7

τ̂ = ti

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient?
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistente Insesgado Eficiente

τ̂ = τ̂ML = t1+...+tN
N 3 3 3

τ̂ = t1+...+tN
N−1 3 7 7

τ̂ = ti 7 3 7

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Why τ̂ = ti is unbiased

Bias: b = E[τ̂ ]− τ
Note: if you don’t know the true value, you must simulate the bias of the method
Generate toys with known parameters, and check what is the estimate of the parameter for the toy
data
If there is a bias, correct for it to obtain an unbiased estimator

ti is an individual observation, which is still sampled from the original factorized p.d.f.

f (ti; τ) = 1
τ

e−
ti
τ

The expected value of ti is therefore still E[τ̂ ] = E[ti] = τ

τ̂ = ti is therefore unbiased!
Consistente Insesgado Eficiente

τ̂ = ti 7 3 7

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Bias-variance tradeoff and optimal variance 1/

We usually want to optimize both bias ~b and variance V[~̂θ]

While we can optimize each one separately, optimizing them simultaneously leads to none
being optimally optimized, in genreal

Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
of the two properties

The variance is linked to the width of the likelihood function, which naturally leads to linking it
to the curvature of L(~x; ~θ) near the maximum

However, the curvature of L(~x; ~θ) near the maximum is linked to the Fisher information, as we
have seen

Information is therefore a limiting factor for the variance (no data set contains infinite
information, variance cannot collapse to zero)

Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

V[θ̂] ≥
1

θ̂
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Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

V[θ̂] ≥ (1+∂b/∂θ)2

−E
[
∂2lnL/∂θ2

]
In multiple dimensions, this is linked with the Fisher Information Matrix:
Iij = E

[
∂2lnL/∂θi∂θj

]
Approximations

Neglect the bias (b = 0)
Inequality is an approximate equality (true for large data samples)

V[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
Estimate of the variance of the estimate of the parameter!

V̂[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
|
θ= ˆtheta
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Bias-variance tradeoff and optimal variance 2/

For multidimensional parameters, we can build the information matrix with elements:

Ijk(~θ) = −E
[ N∑

i

∂2lnf (xi; ~θ)

∂θk∂θk

]
= N

∫
1
f
∂f
∂θj

∂f
∂θk

dx

(the last equality is due to the integration interval not being dependent on ~θ)
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Estimating variance non-analytically

We have calculated the variance of the MLE in the simple case of the nuclear decay

Analytic calculation of the variance is not always possible

Write the variance approximately as:

V[θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2lnL
∂θ2

]
This expression is valid for any estimator, but if applied to the MLE then we can note ~θML is
efficient and asymptotically unbiased

Therefore, when N →∞ then b = 0 and the variance approximate to the RCF bound, and ≥
becomes ':

V[~θML] '
1

−E
[
∂2lnL
∂θ2

]∣∣∣
θ=~θML
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How to extract an interval from the likelihood function 1/

For a Gaussian p.d.f., f (x; ~θ) = N(µ, σ), the likelihood can be written as:

L(~x; ~θ) = ln
[
−

(~x− ~θ)2

2σ2

]
Moving away from the maximum of L(~x; ~θ) by one unit of σ, the likelihood assumes the value
1
2 , and the area enclosed in [~θ − σ, ~θ + σ] will be—because of the properties of the Normal
distribution—equal to 68.3%.
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How to extract an interval from the likelihood function 2/
We can therefore write

P
(

(~x− ~θ)2 ≤ σ)
)

= 68.3%

P(−σ ≤ ~x− ~θ ≤ σ) = 68.3%

P(~x− σ ≤ ~θ ≤ ~x + σ) = 68.3%

Taking into account that it is important to keep in mind that probability is a property of sets, in
frequentist statistics

Confidence interval: interval with a fixed probability content
This process for computing a confidence interval is exact for a Gaussian p.d.f.

Pathological cases reviewed later on (confidence belts and Neyman construction)
Practical prescription:

Point estimate by computing the Maximum Likelihood Estimate
Confidence interval by taking the range delimited by the crossings of the likelihood function with 1

2 (for
68.3% probability content, or 2 for 95% probability content—2σ, etc)
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How to extract an interval from the likelihood function 3/
MLE is invariant for monotonic transformations of θ

This applies not only to the maximum of the likelihood, but to all relative values
The likelihood ratio is therefore an invariant quantity (we’ll use it for hypothesis testing)
Can transform the likelihood such that log(L(~x; ~θ)) is parabolic, but not necessary (MINOS/Minuit)

When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian
tails...

This yields symmetric approximate intervals
The approximation is often good even for small amounts of data

...or use asymmetric intervals by just looking at the crossing of the log(L(~x; ~θ)) values
Naturally-arising asymmetrical intervals
No gaussian approximation

In any case (even asymmetric intervals) still based on asymptotic expansion
Method is exact only to O( 1

N )

Plot from James, 2nd ed.
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And in many dimensions...

Construct logL contours and determine confidence intervals by MINOS
Elliptical contours correspond to gaussian Likelihoods

The closer to MLE, the more elliptical the contours, even in non-linear problems
All models are linear in a sufficiently small region

Nonlinear regions not problematic (no parabolic transformation of logL needed)
MINOS accounts for non-linearities by following the likelihood contour

Confidence intervals for each
parameter

max
θj,j6=i

logL(θ) = logL(θ̂)− λ

λ =
Z2

1−β
2

λ = 1/2 for β = 0.683 (“1σ”)
λ = 2 for β = 0.955 (“2σ”)

Plot from James, 2nd ed.
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What if I have systematic uncertainties? /1

Parametrize them into the likelihood function; conventional separation of parameters in two
classes

the Parameter(s) of Interest (POI), often representing σ/σSM and denoted as µ (signal strength)
the parameters representing uncertainties, nuisance parameters θ

H0: µ = 0 (Standard Model only, no Higgs)

H1: µ = 1 (Standard Model + Standard Model Higgs)

Find the maximum likelihood estimates (MLEs) µ̂, θ̂

Find the conditional MLE ˆ̂
θ(µ), i.e. the value of θ maximizing the likelihood function for each

fixed value of µ

Write the test statistics as λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)

Independent on the nuisance parameters (profiled, i.e. their MLE has been taken as a function of
each value of µ)
Can even “freeze” them one by one to extract their contribution to the total uncertainty

To model the nuisance parameters you can reparameterize them as α(θ) introducing an
explicit “p.d.f.” for them L(n,α0|µ,α) =

∏
i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)

The likelihood ratio is then λ(µ) =
L(µ, ˆ̂αµ)

L(µ̂,α̂)
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What if I have systematic uncertainties? /2

The likelihood ratio λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)

Conceptually, you can run the experiment many times (e.g. toys) and record the value of the
test statistic
The test statistic can therefore be seen as a distribution
Asymptotically, λ(µ) ∼ exp

[
− 1

2χ
2
](

1 +O( 1√
N

)
)

(Wilks Theorem, under some regularity
conditions—continuity of the likelihood and up to 2nd derivatives, existence of a maximum,
etc)

The χ2 distribution depends only on a single parameter, the number of degrees of freedom
It follows that the test statistic is independent of the values of the nuisance parameters
Useful: you don’t need to make toys in order to find out how is λ(µ) distributed!
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How to extract an interval from the likelihood function

Theorem: for any p.d.f. f (x|~θ), in the large numbers limit N →∞, the likelihood can always
be approximated with a gaussian:

L(~x; ~θ) ∝N→∞ e−
1
2 (~θ−~θML)T H(~θ−~θML)

where H is the information matrix I(~θ).

Under these conditions, V[~θML]→ 1
I(~θML)

, and the intervals can be computed as:

∆lnL := lnL(θ′)− lnLmax = −
1
2

The resulting interval has in general a larger probability content than the one for a gaussian
p.d.f., but the approximation grows better when N increases

The interval overcovers the true value ~θtrue
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How to extract an interval from the likelihood function—interpretation

~θtrue is therefore stimated as θ̂ = ~θML ± σ. This is another situation in which frequentist and
Bayesian statistics differ in the interpretation of the numerical result

Frequentist: ~θtrue is fixed
“if I repeat the experiment many times, computing each time a confidence interval around ~θML, on
average 68.3% of those intervals will contain ~θtrue”
Coverage: “the interval covers the true value with 68.3% probability”
Direct consequence of the probability being a property of data sets

Bayesian: ~θtrue is not fixed
“the true value ~θtrue will be in the range [~θML − σ, ~θML + σ] with a probabilty of 68.3%”
This corresponds to giving a value for the posterior probability of the parameter ~θtrue
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Non-normal likelihoods and Gaussian approximation — 1

How good is the approximation L(~x; ~θ ∝ exp
[
− 1

2 (~θ − ~θMLE)T H(~θ − ~θML)
]
?

Here H is the information matrix I(~θ)
True only to O( 1

N )

In these conditions, V[~θML]→ 1
I(~θML)

Intervals can be derived by crossings: ∆lnL = lnL(θ′)− lnLmax = k

Convince yourselves of how good is this approximation in case of the nuclear decay
(simplified case of N measurements in which ti = 1)!
wget https://raw.githubusercontent.com/vischia/statex/master/nuclearDecay.R
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Non-normal likelihoods and Gaussian approximation — 2
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Non-normal likelihoods and Gaussian approximation — 3
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The Central Limit Theorem

The convergence of the likelihood L(~x; ~θ) to a gaussian is a direct consequence of the central
limit theorem

Take a set of measurements~x = (xi, ..., xN) affected by experimental errors that results in
uncertainties σ1, ..., σN (not necessarily equal among each other)

In the limit of a large number of events, M →∞, the random variable built summing M
measurements is gaussian-distributed:

Q :=
M∑

j=1

xj ∼ N
( M∑

j=1

xj,
M∑

j=1

σ2
j

)
, ∀ f (x, ~θ)

The demonstration runs by expanding in series the characteristic function yi =
xj−µj√
σj

The theorem is valid for any p.d.f. f (x, ~θ) that is reasonably peaked around its expected value.
If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a
large weight in the sum, and the distribution of Q will have non-gaussian tails
The consequence is an alteration of the probability of having sums Q outside of the gaussian
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Asymptoticity of the Central limit theorem

The condition M →∞ is reasonably valid if the sum is of many small contributions.

How large does M need to be for the approximation to be reasonably good?

Download the file and check!
wget https://raw.githubusercontent.com/vischia/statex/master/centralllimit.py

Not much!
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From sidebands to systematic uncertainties

As described, let’s model our estimation problem using profile likelihoods
L(n,α0|µ,α) =

∏
i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)

λ(µ) =
L(µ, ˆ̂αµ)

L(µ̂,α̂)

Sideband measurement

Lfull(s, b) = P(NSR|s + b)× P(NCR|τ̃ · b)

Subsidiary measurement of the background rate:
8% systematic uncertainty on the MC rates
b̃: measured background rate by MC simulation
G(b̃|b, 0.08): our

Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
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Renormalization of the subsidiary measurement

L(n,α0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)y

L(n, 0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(0|αj, 1)

Subsidiary measurement often labelled constraint term

It is not a PDF in α: G(αj|0, 1) 6= G(0|αj, 1)

Response function: B̃i(1 + 0.1α) (a unit change in α –e.g. 5% JES– changes the acceptance
by 10%)

Graphics from W. Verkerke
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Interpolation needed between template models
Conditional density f (x|α) constructed by some means for a discrete set of values α1, ...αN

The exact dependence of f (x|α) on α is unknown
In practice f (x|αi) often nonparametric density estimates in the x space (e.g. histograms)

Problem: determine f (x|α) for arbitrary αi
Typically αi within the cloud of α1, ...αN , and direct calculation too expensive
Need to keep the densities normalized:

∫
f (x|α)dx = 1, ∀α

Graphics from W. Verkerke
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Horizontal or vertical morphing?

Vertical interpolation of single-parameter 1D
densities:
f (x|α) = w1f (x|α1) + (1− w1)f (x|α2),
w1 = α2−α

α2−α1
, α ∈ [α1, α2]

Horizontal interpolation: identical parameter
dependence, but interpolate quantile
function
q(y|α) = w1q(y|α1) + (1− w1)q(y|α2),
q(y|α) := F−1(y|α)

Have to solve q(y|α) = x numerically
Difficult to evaluate numerically around y = 0
and y = 1

Vertical interpolation is often not what you
want

Except some cases, e.g. interpolation of
detector efficiency curves
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Horizontal interpolation/morphing in one dimension
For HEP application and univariate densities, reasonable solution is linear interpolation

A.L. Read, Linear interpolation of histograms, NIM A 425, 357 (1999)
Can fail dramatically if the change in shape is comparable with or smaller than MC statistical
fluctuations
Sometimes we may want to avoid adding this new degree of freedom in the model
Decoupling rate and shape effects is always possible, even when not neglecting the shape ones)

Graphics from W. Verkerke

The cases f (~x|α) and f (~x|~α) remain delicate
Multivariate parameters: g(·|~α) =

∑N
i=1 wi(~α, ~α1, ..., ~αN)g(·)~αi

g(·|~α) either density function (x) or quantile function (y)
Non-negative weights summing up to 1; many techniques (polinomial, local poly, spline best used in
1D)
Lack of generality because assumes Euclidean space
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What if our metric is not Euclidean?
Given two distributions P0 and P1, define an optimal map T transforming X ∼ P0 into
T(X) ∼ P1 (Monge, 1781)
Define a geodesic path between P0 and P1 in the space of the distributions, according to a
given metric

Shape-preserving notion of averages of distributions
Distance based on transport along geodesic paths

Let X ∼ P0, and find T by minimizing E
[
‖ X − T(X) ‖p

]
=
∫
‖ x− T(x) ‖p dP0(x)

Minimization over all T s.t. T(X) ∼ P1. Can replace Euclidean distance with any distance
The minimizer is called optimal transport map
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Generalize to arbitrary metric
Formally a minimization of the weighted average distance:
S(f , ~α, ~α1, ~αN) =

∑N
i=1 wi(~α, ~α1, ~αN)

[
D
(

f (x|~α), f (x|~αi

)]p

D(f (x), g(x)) is a distance (metric functional in the space of distributions)
Every metric generates an interpolation method (see Chap. 14 of Encyclopedia of Distances,
Deza and Deza, 4ed., Springer, 2016)
L2 distance generates vertical morphing (with p = 2, [D(·)]p is the integrated squared error)
Wasserstein distance generates horizontal morphing (p=1 Earth Mover distance)

Wp(X, Y) := Wp(P0, P1) =
( ∫
‖ x− T∗(x) ‖p dP0(x)

)1/p
, T∗ optimal transport map

Works well in defining a metric in the space of almost all distributions
The set of distributions equipped with Wasserstein distance is a geodesic space (Riemaniann if
p = 2)
Given P0 and P1 there is always a shortest path (geodesic) between them, and its length is the
Wasserstein distance W(P0, P1)

Graphics from Bonneel, Peyre, Cuturi, 2016
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Optimal transport is quite powerful

Graphics from Peyre, Cuturi, 2019
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What if a transport map from P0 to P1 does not exist?

Example: P = δ0 (point mass at 0), Q = Gaussian

Kantorovich relaxation: take the mass at x and split it into small components

J set of all joint distributions J for (X, Y) with marginals P and Q (coupling between P and Q)

Find J to minimize EJ

[
‖ X − Y ‖

]
=
( ∫
‖ x− y ‖p dJ(x, y)

) 1
p

Wasserstein distance: W(P,Q) = W(X, Y) =
(

infJ
∫
‖ x− y ‖2 dJ(x, y)

) 1
2

If an optimal transport T exists, then the optimal J is
degenerate and supported on the curve (x, T(x))

Regularization possible by adding term:

EJ

[
‖ X − Y ‖

]
=
( ∫
‖ x− y ‖p dJ(x, y)

) 1
p

+ λf (J)

f (J) e.g. entropy
Fast, and easier inference
How to choose λ? Not clear effect of regularization

Graphics from Wikipedia
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Uncertainty quantification

These methods introduce an uncertainty in the morphed shape determination

T̂ estimate of T based on samples X1, ...,XN ∼ P0, Y1, ..., YN ∼ P1

Closeness of T̂ to T (Ŵ(P0,P1) to W(P0,P1) depends on number of dimensions
E
∫
‖ T̂(x)− T(x) ‖2 dP0(x) ≈ ( 1

N )
1
d (curse of dimensionality)

Getting confidence intervals very hard, solved only for special cases
1D (Munck, Czado, Sommerfeld)
MultiD: sliced Wassserstein distance (average W between 1D projections of P0 and P1)
Under this approximation (weaker metric), can derive confidence regions by
a minimax game on the Lr norm of quantile functions of P0 and P1 for a fixed confidence level
Coverage guaranteed by construction

Graphics from arXiv:1909.07862. Here P0 is P and P1 is Q, indices refer to two example cases, n = 100
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Moment morphing
Moment morphing: morph standardized densities instead of densities

Useful for models with well-behaved first moments (mean and variance)
Not as good as horizontal morphing in 1D (inefficient version of it), good approximation in N
How to morph the covariance matrix? Many choices available

Graphics from Lydia Brenner
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The Inverse Rosenblatt Transformation

Devise a multi-D equivalent of quantile function: the Inverse Rosenblatt transformation
(Ann. Math. Statist. 23, 470 (1952).

The inverse Rosenblatt transformation x1 = F−1
1 (z1), x2 = F−1

2 (z2|z1) uses conditional
quantile functions: we know how to interpolate them!

Computationally intensive (k non-linear equations to be solved numerically, N calls to
root-finding, etc)

Graphics by Igor Volobouev
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Copula morphing
Probability integral transforms of marginals of f (~x): z1 = F1(x1),... zk = Fk(xk)

Copula density c(~z) is density of the vector of zk, captures mutual information (and c(~z)
uniform if and only if all Xi independent)
Given the marginal densities fi(x) =

dFi(x)
dx , then f (~x = c(F1(x1), ...,Fk(xk))

∏k
i=1 fi(xi)

Now do horizontal morphing on the marginals separately in each variable, then interpolate
vertically the copula density
Much faster than Inverse Rosenblatt transformation
Results intuitively more “reasonable”

Graphics by Igor Volobouev
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How we tend to call things in CMS

Analytic knowledge on λ,m
Discretized knowledge on λ,m Statistical fluctuations
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Accounting for various effects: statistical fluctuations

Slide by Olaf Behnke
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Morphing in the Higgs Combination Tool

Slide by Olaf Behnke
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Morphing in the theta tool

Slide by Olaf Behnke
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Horizontal smoothing

Horizontal smoothing with well-established
methods in literature
Kernel-based methods depend on choice of
bandwith

Discussed in detail last week (Nick McColl)

Local linear regression depends on locality
window

Slide by Olaf Behnke

Vischia Statistics for HEP, LIP Lisboa LHC Course 2020 March 16th and 18th, 2020 116 / 122

https://indico.cern.ch/event/865314/#1-kde-tool-from-b2g


Smoothing and Goodness-of-Fit tests
To compare the smoothed and unsmoothed templates it’s tempting to use χ2

However, χ2 not well defined; by construction, smoothing alters number of degrees of freedom
You have first to treat your smoothing method as a linear filter, and calculate NDoF (in KDE,
related to autocorrelation of the kernels used)

Somehow related to time series analysis: reduction of NDoF
There is literature on this, we can put it in twiki; in the meantime, ask Igor Volobouev ,
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Caveats on modelling theory uncertainties (P.V. at Benasque 2018
Cross section uncertainty: easy, assuming a gaussian for the constraint term
Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
Factorization scale: what distribution F is meant to model the constraint???
Lfull(s, b) = P(NSR|s + b(αFS)×F(α̃FS|αFS)

“Easy” case, there is a single parameter αFS, clearly connected to the underlying physics model
Hadronization/fragmentation model: run different generators, observing different results

Difficult! Not just one parameter, how do you model it in the likelihood?
2-point systematics: you can evaluate two (three, four...) configurations, but underlying reason for
difference unclear
Often define empirical response function

Counting experiment: easy extend to other
generators

There must exist a value of α corresponding
to SHERPA

Shape experiment: ouch!

SHERPA is in general not obtainable as an
interpolation of PYTHIA and HERWIG

Graphics from W. Verkerke
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Define a constraint term

Attempting to quantify our knowledge of the models

There is no single parameter, difficult to model the differences within a single underlying
model

Which of these is the “correct” one?

Graphics from W. Verkerke
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Solving the delta functions issue: discrete profiling

Label each shape with an integer, and use the integer as nuisance parameter

Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance
parameter values
How do you define the various shapes?

Need many additional generators!
Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

From arXiv:1408.6865
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The issue of over-constraining

How to interpret
constraints?

Not as measurements
Correlations in the fit
make interpretation
complicated

Avoid statements when
profiling as a nuisance
parameter

Graphics from ATLAS and W. Verkerke, as far as I remember
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Summary of the first day

Statistics is a tool to answer questions (but you must pose questions in a well-defined way)
Mathematical definition of probability based on set theory and on the theory of Lebesgue
measure

Frequentist and Bayesian statistics
Conditioning, marginalization
Expected values, variance

Random variables and probability distributions
Correlation vs causality

Information and likelihood principle
Sufficiency, ancillarity, pivoting

Estimators
Point estimates with the Maximum Likelihood Estimator (MLE)
Interval estimates with the MLE
The profile likelihood ratio and modelling of systematic uncertainties
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THANKS FOR THE ATTENTION!
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