

Statistics

or "How to find answers to your questions"

Pietro Vischia¹

¹CP3 — IRMP, Université catholique de Louvain

Institut de recherche en mathématique et physique

LIP-Lisboa, Statistics Lectures (March 16th and 18th, 2020), Course on Physics at the LHC 2020

Contents

Why statistics? Fundaments

Games, weather

Random variables and distributions

Random variables and their properties Distributions

Estimating a physical quantity

Likelihood Principle

Estimators and maximum likelihood

Profile likelihood ratio

Practicalities

- Schedule: two lessons
 - Monday 16.03, 17h (this lesson)
 - Wednesday 18.03, 17h (unless you prefer e.g. Tuesday)
- The slides contain links to a few exercises and examples
 - In a longer course there is time to go through them, not in two lessons
 - You are encouraged to play with the exercises offline
- Many interesting references
 - Papers mostly in each slide
 - Some cool books after the summary slide of the second lesson
- Unless stated otherwise, figures belong to P. Vischia, ******
 (textbook to be published by Springer in 2021)
- Your feedback is crucial for improving these lectures!

Why statistics?

Statistics is all about answering questions...

- What is the chance of obtaining a 1 when throwing a six-faced die?
- What is the chance of tomorrow being rainy?

Statistics is all about answering questions...

- What is the chance of obtaining a 1 when throwing a six-faced die?
 - We can throw a dice 100 times, and count how many times we obtain 1
- What is the chance of tomorrow being rainy?

Statistics is all about answering questions...

- What is the chance of obtaining a 1 when throwing a six-faced die?
 - We can throw a dice 100 times, and count how many times we obtain 1
- What is the chance of tomorrow being rainy?
 - We can try to give an answer based on the recent past weather, but we cannot in general repeat tomorrow and count

...and about making sure to be posing them in a meaningful way

Image from "The Tiger Lillies" Facebook page

Theory

- Approximations
- Free parameters

Theory

- Approximations
- Free parameters

Experiment

- Random fluctuations
- Mismeasurements (detector effects, etc)

Theory

- Approximations
- Free parameters

Statistics!

Experiment

- Random fluctuations
- Mismeasurements (detector effects, etc)

Theory

- Approximations
- Free parameters

Statistics!

- Estimate parameters
- Quantify uncertainty in the parameters estimate
- Test the theory!

Experiment

- Random fluctuations
- Mismeasurements (detector effects, etc)

Fundaments

What is a "probability"? — Kolmogorov and set theory

- Ω : set of all possible elementary (exclusive) events X_i
- Exclusivity: the occurrence of one event implies that none of the others occur
- Probability then is any function that satisfies the Kolmogorov axioms:
 - $P(X_i) > 0, \forall i$
 - $P(X_i \text{ or } X_j) = P(X_i) + P(X_j)$ $\sum_{\Omega} P(X_i) = 1$

Andrey Kolmogorov.

- Cox theorem (1946): formalize a set of axioms starting from reasonable premises¹
 - \bullet c * b|a = F(c|b * a, b|a)
 - $\sim b|a = S(b|a)$, i.e. $(b|a)^m + (\sim b|a)^m = 1$
- Cox theorem acts on propositions, Kolmogorov axioms on sets
- Jaynes adheres to Cox' exposition and shows that formally this is equivalent to Kolmogorov theory
 - Kolmogorov axioms somehow arbitrary
 - A proposition referring to the real world cannot always be viewed as disjunction of propositions from any meaningful set
 - Continuity as infinite states of knowledge rather than infinite subsets
 - Conditional probability not originally defined

 $^{{}^{1}}a|b$ = the occurrence of event a conditioned on the occurrence of event b

Probability in the Theory of Measure — What's a length?

- Theory of probability originated in the context of games of chance
- Mathematical roots in the theory of Lebesgue measure and set functions in \mathbb{R}^n
- Measure is something we want to define for an interval in \mathbb{R}^n
 - 1D: the usual notion of length
 - 2D: the usual notion of area
 - 3D: the usual notion of volume
- Interval $i = a_{\nu} \leq x_{\nu} \leq a_{\nu}$

$$L(i) = \prod_{\nu=1}^{n} (b_{\nu} - a_{\nu}).$$

- The length of degenerate intervals $a_{\nu}=b_{\nu}$ is L(i)=0; it does therefore not matter the interval is closed, open, or half-open:
- We set to $+\infty$ the length of any infinite non-degenerate interval such as $]25, +\infty]$ or $[-\infty, 2]$.
- But do we connect different intervals?

The Borel lemma and the additivity of length

• In \mathbb{R}^1 , an interval [a, b] has length:

$$L(i) = b - a$$

$$L(a, a) = 0$$

$$L(\infty) = \infty.$$

Disjoint intervals (no common point with any other)

$$i = i_1 + ... + i_n,$$
 $(i_{\mu}i_{\nu} = 0 \text{ for } \mu \neq \nu);$

- Define the sum as $L(i) := L(i_1) + ... + L(i_n)$
 - Extendable to an enumerable sequence of intervals (crucial for defining continuous density functions)
- Borel lemma: we consider a finite closed interval [a, b] and a set of Z intervals such that every point of [a, b] is an inner point of at least one interval belonging to Z.
 - Then there is a subset Z' of Z containing only a finite number of intervals, such that every point of [a,b] is an inner point of at least one interval belonging to Z'.
- Generalizable to *N* dimensions, with L(i) additive function of i: $i = \sum i_n \Rightarrow L(i) = \sum L(i_n)$

Measure and Length

- L(i) is a non-negative additive function (finite- or infinite-valued): a <u>measure</u>
- Definition extendable from intervals to complex sets:
 - $L(S) \geq 0$
 - If $S = S_1 + \ldots + S_n$, where $S_\mu S_\nu = 0$ for $\mu \neq \nu$ then $L(S) = L(S_1) + \ldots + L(S_n)$
 - If S is an interval i, then the set function L(S) reduces itself to the interval function L(i), L(S) = L(i)
- True only for Borel sets
 - In layman's terms, sets that can be constructed by taking countable unions or intersections (and their respective complements) of open sets
- L(S) is a measure and it's called Lebesgue measure
 - The extension from L(i) to L(S) is unique (the only set function defined on the whole B₁ satisfying the
 properties above)
 - Extension to \mathbb{R}^n is immediate: $L_n(S)$

Set Fuctions and Point Functions

- Generalization of $L_n(S)$: the P-measure
 - P(S) is non-negative, $P(S) \ge 0$;
 - 2 P(S) is additive, $P(S_1 + ... + S_n) = P(S_1) + ... + P(S_n)$ where $S_{\mu}S_{\nu} = 0$ for $\mu \neq \nu$;
- •
- Associate to any P(S) a point function $F(x) = F(x_1, ..., x_n)$

$$F(\mathbf{x}) = F(x_1, ..., x : n) := P(\xi_1 \le x_1, ..., \xi_n \le x_n).$$

- Trivial in one dimension. P(S) must have an upper bound!
- Map F(a) = F(b) to set of null P-measure, $P(a < x \le b) = 0$
- \bullet F(x) is in each point a non-decreasing function everywhere-continuous to the right

$$P(a < x \le a + h) = \Delta F(a) = F(a + h) - F(a),$$

Distributions, finally!

• Consider a class of non-negative additive set functions P(S) such that $P(\mathbb{R}^n)=1$; then

$$F(\mathbf{x}) = F(x_1, ..., x_n) = P(\xi \le x_1, ..., \xi_n \le x_n)$$

$$0 \le F(\mathbf{x}) \le 1$$

$$\Delta_n F \ge 0$$

$$F(-\infty, x_2, ..., x_n) = ... = F(x_1, ..., x_n - 1, -\infty) = 0$$

$$F(+\infty, ..., +\infty) = 1.$$

- We interpret P(S) and F(x) as distribution of a unit of mass over \mathbb{R}^n
 - Each Borel set carries the mass P(S)
 - Interpret (x as the quantity of mass allotted to the infinite interval ($\xi_1 \leq x_1, ..., \xi_n \leq x_{\nu}$).
 - Defining the measure in terms of P(S) or F(x) is equivalent
- Usually P(S) is called probability function, and F(x) is called distribution function

What about individual points?

- What about individual points?
 - Discrete mass point a; a point such that the set $\{x = a\}$ carries a positive quantity of mass.

$$\begin{split} P(S) &= c_1 P_1(S) + c_2 P_2(S) \\ \text{or} \\ F(\mathbf{x}) &= c_1 F_1(\mathbf{x}) + c_2 F_2(\mathbf{x}) \\ \text{where} \\ c_{\nu} &\geq 0, \qquad c_1 + c_2 = 1, \end{split}$$

- c₁: component with whole mass concentrated in discrete mass points. c₂: component with no discrete
 mass points
- $c_1 = 1$, $c_2 = 0$: F(x) is a step function, where the whole mass is concentrated in the discontinuity points
- c₁ = 0, c₂ = 1, then if n = 1 then F(x) is everywhere continuous, and in any dimension no single
 mass point carries a positive quantity of mass.

Probability density

- Consider the *n*-dimensional interval $i = \{x_{\nu} h_{\nu} < \xi_{\nu} \le x_{\nu} + h_{\nu}; \nu = 1, ..., n\}$
- Average density of mass: the ratio of the P-measure of the interval—expressed in terms of the increments of the point function—to the L-measure of the interval itself

$$\frac{P(i)}{L(i)} = \frac{\Delta_n F}{2^n h_1 h_2 \dots h_n}.$$

- If partial derivatives $f(x_1,...,x_n)=\frac{\partial_n F}{\partial x_1...\partial x_n}$ exist, then $\frac{P(i)}{L(i)}\to f(x_1,...,x_n)$ for $h_{\nu}\to 0$
 - Density of mass at the point x
 - f is referred to as probability density or frequency function

Marginal distributions

- Take a distribution function $F(x_1, ..., x_n)$
- Let $x_{\mu} \to \infty$, $\mu \neq \nu$
- It can be shown that $F \to F_{\nu}(x_{\nu})$, and that itself is a distribution function in the variable x_{ν}
 - e.g. $F_1(x_1) = F(x_1, +\infty, ..., +\infty)$.
- $F_{\nu}(x_{\nu})$ is one-dimensional, and is called the marginal distribution of x_{ν} .
 - It can be obtained by projection starting from the n-dimensional distribution
 - Shift each "mass particle" along the perpendicular direction to x_{ν} until collapsing into the x_{ν} axis
 - This results in a one-dimensional distribution which is the marginal distribution of x_{ν} .
 - There are infinite ways of arriving to the same x_{ν} starting from a generic n-dimensional distribution function
- Marginal distributions can be also built with respect to subsets of variables.

Random experiment

- Repeat a random experiment ξ (e.g. toss of a die) many times under uniform conditions
 - As uniform as possible
 - \vec{S} : set of all a priori possible different results of an individual measurement
 - S: a fixes subset of \vec{S}
- If in an experiment we obtain $\xi \in S$, we will say the event defined by $\xi \in S$ has occurred
 - We assume that S is simple enough that we can tell whether ξ is in it or not
- Throw a die: $\vec{S} = \{1, 2, 3, 4, 5, 6\}$
 - If $S = \{2, 4, 6\}$, then $\xi \in S$ corresponds to the event in which you obtain an even number of points
- ullet Repeat the experiment: among n repetitions the event has occurred u times
 - Then $\frac{\nu}{n}$ is the frequency ratio of the event in the sequence of *n* experiments
- EXERCISE: For a fixed event, how does the frequency ratio behave for increasing n? wget https://raw.githubusercontent.com/vischia/statex/master/frequencyRatio.ipynb

Frequentist probability - 1

- The most familiar one: based on the possibility of repeating an experiment many times
- Consider one experiment in which a series of *N* events is observed.
- n of those N events are of type X
- Frequentist probability for any single event to be of type X is the empirical limit of the frequency ratio:

$$P(X) = \lim_{N \to \infty} \frac{n}{N}$$

Frequentist probability - 2

- The experiment must be repeatable in the same conditions
- The job of the physicist is making sure that all the *relevant* conditions in the experiments are the same, and to correct for the unavoidable changes.
 - Yes, relevant can be a somehow fuzzy concept
- In some cases, you can directly build the full table of frequencies (e.g. dice throws, poker)
- What if the experiment cannot be repeated, making the concept of frequency ill-defined?

Hand	Dis Inc tHanes	Frequency	Probability	Curvalative probability	066s	Hahemalcal expression of absolute frequency
Royal fush	1	4	0.00015494	0.000154%	649,739 :1	(4) 1)
Similat fush (recluding repart fush)	,	36	0.00139%	0.0024%	72,192 :1	$\binom{10}{1}\binom{4}{1}-\binom{4}{1}$
Four eta lind	156	624	0.0240%	0.0256%	4,64:1	$\binom{13}{1}\binom{12}{1}\binom{4}{1}$
Pull house	156	3,744	0.1441%	0.17%	693 :1	$\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}$
Flush (excluding expa) flush and straught flush)	1,277	5,200	0.1955%	0.367%	508:1	$\binom{13}{5}\binom{4}{1} - \binom{10}{1}\binom{4}{1}$
Straight (excluding royal Bush and straight Bush)	10	10,200	0.3925%	0.28%	254:1	$\binom{10}{1}\binom{4}{1}^5 - \binom{10}{1}\binom{4}{1}$
Tame of a kind	858	54,912	2,1128%	2,87%	46.3:1	$\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}^2$
Two pak	858	123,662	4.7839%	7,52%	20.0:1	$\binom{13}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$
One par	2,860	1,998,240	42 2569%	49.5%	137:1	$\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^3$
He pair / High card	1,277	1,202,540	50.1177%	100%	0.996 :1	$\left[\binom{13}{5}-10\right]\left[\binom{4}{1}^5-4\right]$
TN	7,462	2,598,960	100%	-	0:1	(52) 5)

Subjective (Bayesian) probability

- Based on the concept of <u>degree of belief</u>
 - \bullet P(X) is the subjective degree of belief on X being true
- De Finetti: operative definition of subjective probability, based on the concept of <u>coherent bet</u>
 - We want to determine P(X); we assume that if you bet on X, you win a fixed amount of money if X
 happens, and nothing (0) if X does not happen
 - In such conditions, it is possible to define the probability of X happening as

$$P(X) := \frac{\text{The largest amount you are willing to bet}}{\text{The amount you stand to win}}$$
(1)

- Coherence is a crucial concept
 - You can leverage your bets in order to try and not loose too much money in case you are wrong
 - Your bookie is doing a Dutch book on you if the set of bets guarantees a profit to him
 - A bet is coherent if a Dutch book is impossible
- This expression is mathematically a Kolmogorov probability!
- Subjective probability is a property of the observer as much as of the observed system
 - It depends on the knowledge of the observer <u>prior</u> to the experiment, and is supposed to change when the observer gains more knowledge (normally thanks to the result of an experiment)

Book	Odds	Probability	Bet	Payout
Trump elected	Even (1 to 1)	1/(1+1) = 0.5	20	20 + 20 = 40
Clinton elected	3 to 1	1/(1+3) = 0.25	10	10 + 30 = 40
		0.5 + 0.25 = 0.75	30	40

Conditional probabilities: Bayes theorem

Probabilities can be combined to obtain more complex expressions

$$P(A|B) = \frac{\emptyset}{}$$

 \Rightarrow P(B|A) = P(A|B) \times P(B) / P(A)

- Conditional probabilities are not commutative! $P(A|B) \neq P(B|A)$
- Example:
 - A: speaking English
 - B: having a TOEFL certificate
- The probability for an English speaker to have a TOEFL certificate, $P(have\ TOEFL|speak\ English)$, is very small (say $\sim 1\%$ very roughly)
- The probability for a TOELF certificate holder to speak English, $P(speak\ English|have\ TOEFL)$, is unarguably >>>> 3% ©

- Suppose you're on a game show, and you're given the choice of three doors
 - Behind one door is a car;
 - behind the others, goats.
- You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?

- Suppose you're on a game show, and you're given the choice of three doors
 - Behind one door is a car;
 - behind the others, goats.
- You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?
- EXERCISE: build a small simulation to check your answer!

- Suppose you're on a game show, and you're given the choice of three doors
 - Behind one door is a car;
 - behind the others, goats.
- You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?
- EXERCISE: build a small simulation to check your answer!
- The best strategy is to always switch!
- ullet The key is the presenter knows where the car is o he opens different doors
 - The picture would be different if the presenter opened the door at random

- Suppose you're on a game show, and you're given the choice of three doors
 - Behind one door is a car;
 - behind the others, goats.
- You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?
- EXERCISE: build a small simulation to check your answer!
- The best strategy is to always switch!
- \bullet The key is the presenter knows where the car is \to he opens different doors
 - The picture would be different if the presenter opened the door at random

Behind 1	Behind 2	Behind 3	If you keep 1	If you switch	Presenter opens
Car	Goat	Goat	Win car	Win goat	2 or 3
Goat	Car	Goat	Win goat	Win car	3
Goat	Goat	Car	Win goat	Win car	2

Bayes Theorem and the Law of Total Probability

Bayes Theorem (1763):

$$P(A|B) := \frac{P(B|A)P(A)}{P(B)} \tag{2}$$

- Valid for any Kolmogorov probability
- The theorem can be expressed also by first starting from a subset B of the space
- Decomposing the space S in disjoint sets A_i (i.e. ∩A_iA_j = 0∀i,j), ∪_iA_i = S an expression can be given for B as a function of the A_is, the Law of Total Probability:

$$P(B) = \sum_{i} P(B \cap A_i) = \sum_{i} P(B|A_i)P(A_i)$$
(3)

- where the second equality holds only for if the A_i s are disjoint
- Finally, the Bayes Theorem can be rewritten using the decomposition of S as:

$$P(A|B) := \frac{P(B|A)P(A)}{\sum_{i} P(B|A_i)P(A_i)} \tag{4}$$

A Diagnosis problem

- The Bayes theorem permits to "invert" conditional probabilities, and can be applied to any Kolmogorov probability, therefore in particular to both frequentist and Bayesian definitions
- Let's consider a mortal disease, and label the possible states of the patients
 - D: the patient is diseased (sick)
 - H: the patient is healthy
- Let's imagine we have devised a diagnostic test, characterized by the possible results
 - +: the test is positive to the disease
 - -: the test is negative to the disease
- Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false positives percentage is very low: P(+|H) = 0.01
- You take the test, and the test is positive. Do you have the disease?

A Diagnosis problem

- The Bayes theorem permits to "invert" conditional probabilities, and can be applied to any Kolmogorov probability, therefore in particular to both frequentist and Bayesian definitions
- Let's consider a mortal disease, and label the possible states of the patients
 - D: the patient is diseased (sick)
 - H: the patient is healthy
- Let's imagine we have devised a diagnostic test, characterized by the possible results
 - +: the test is positive to the disease
 - · -: the test is negative to the disease
- Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false positives percentage is very low: P(+|H) = 0.01
- You take the test, and the test is positive. Do you have the disease?
- By the Bayes Theorem:

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|H)P(H)}$$
(5)

A Diagnosis problem

- The Bayes theorem permits to "invert" conditional probabilities, and can be applied to any Kolmogorov probability, therefore in particular to both frequentist and Bayesian definitions
- Let's consider a mortal disease, and label the possible states of the patients
 - D: the patient is diseased (sick)
 - H: the patient is healthy
- Let's imagine we have devised a diagnostic test, characterized by the possible results
 - +: the test is positive to the disease
 - · -: the test is negative to the disease
- Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false positives percentage is very low: P(+|H) = 0.01
- You take the test, and the test is positive. Do you have the disease?
- By the Bayes Theorem:

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|H)P(H)}$$
(5)

- We need the incidence of the disease in the population, P(D)! It turns out P(D) is a very important to get our answer
 - P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
 - P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.4977, which is pretty high (and substantially higher than the previous one)

Bayes Theorem and Subjective Probability

- Frequentist and Subjective probabilities differ in the way of interpreting the probabilities that are written within the Bayes Theorem
- Frequentist: probability is associated to sets of data (i.e. to results of repeatable experiments)
 - Probability is defined as a limit of frequencies
 - Data are considered random, and each point in the space of theories is treated independently
 - An hypothesis is either true or false; improperly, its probability can only be either 0 or 1. In general, P(hypothesis) is not even defined
 - "This model is preferred" must be read as "I claim that there is a large probability that the data that I would obtain when sampling from the model are similar to the data I already observed" fix
 We can only write about P(data|model)
- we can only write about P(data|model)
- Bayesian statistics: the definition of probability is extended to the subjective probability of models or hypotheses:

$$P(H|\vec{X}) := \frac{P(\vec{X}|H)\pi(H)}{P(\vec{X})} \tag{6}$$

The elements of the Bayes Theorem, in Bayesian Statistics

(7)

$$P(H|\vec{X}) := \frac{P(\vec{X}|H)\pi(H)}{P(\vec{X})}$$

- \bullet \vec{X} , the vector of observed data
- $P(\vec{X}|H)$, the <u>likelihood function</u>, which fully summarizes the result of the experiment (experimental resolution)
- $\pi(H)$, the probability of the hypothesis H. It represents the probability we associate to H before we perform the experiment
- $P(\vec{X})$, the probability of the data.
 - Since we already observed them, it is essentially regarded as a normalization factor
 - Summing the probability of the data for all exclusive hypotheses (by the Law of Total Probability), $\sum_i P(\vec{X}|H_i) = 1$ (assuming that at least one H_i is true).
 - Usually, the denominator is omitted and the equality sign is replaced by a proporcionality sign

$$P(H|\vec{X}) \propto P(\vec{X}|H)\pi(H)$$
 (8)

- $P(H|\vec{X})$, the posterior probability; it is obtained as a result of an experiment
- If we parameterize H with a (continuous or discrete) parameter, we can use the parameter as a proxy for H, and instead of writing $P(H(\theta))$ we write $P(\theta)$ and

$$P(\theta|\vec{X}) \propto P(\vec{X}|\theta)\pi(\theta)$$
 (9)

- The simplified expression is usually used, unless when the normalization is necessary
 - "Where is the value of θ such that $\theta_{true} < \theta_c$ with 95% probability?"; integration is needed and the normalization is necessary
 - "Which is the mode of the distribution?"; this is independent of the normalization, and it is therefore not necessary to use the normalized expression

Choosing a prior in Bayesian statistics; in theory... 1/

- There is no golden rule for choosing a prior
- Objective Bayesian school: it is necessary to write a golden rule to choose a prior
 - Usually based on an invariance principle
- Consider a theory parameterized with a parameter, e.g. the ratio of vacuum expectation values v in a quantum field theory, $\beta := \frac{v_1}{v_2}$
- Before any experiment, we are Jon Snow about the parameter β : we know nothing
 - ullet We have to choose a very broad prior, or better uniform, in eta
- Now we interact with a theoretical physicist, who might have built her theory by using as a parameter of the model the tanged of the ratio, $tan\beta$
 - In a natural way, she will express her pre-experiment ignorance using an uniform prior in tanβ.
 - This prior is not constant in $\beta!!!$
 - In general, there is no uniquely-defined prior expressing complete ignorance or ambivalence in both parameters (β and tanβ)
- We can build a prior invariant for transformations of the parameter, but this means we have to
 postulate an invariance principle
 - The prior already deviates from our degree of belief about the parameter ("I know nothing")

Choosing a prior in Bayesian statistics; in theory... 2/

- Two ways of solving the situation
 - Objective Bayes: use a formal rule dictated by an invariance principle
 - Subjective Bayes: use something like <u>elicitation of expert opinion</u>
 - Ask an expert her opinion about each value of θ , and express the answer as a curve
 - Repeat this with many experts
 - 100 years later check the result of the experiments, thus verifying how many experts were right, and re-calibrate
 your prior
 - This corresponds to a IF-THEN proposition: "IF the prior is π(H), THEN you have to update it afterwards, taking
 into account the result of the experiment"
- Central concept: update your priors after each experimient

Choosing a prior in Bayesian statistics; in practice... 1/

- \bullet In particle physics, the typical application of Bayesian statistics is to put an upper limit on a parameter θ
 - Find a value θ_c such that $P(\theta_{true} < \theta_c) = 95\%$
- Typically θ represents the cross section of a physics process, and is proporcional to a variable with a Poisson p.d.f.
- An uniform prior can be chosen, eventually restricted to $\theta \geq 0$ to account for the physical range of θ
- We can write priors as a function of other variables, but in general those variables will be linked to the cross section by some analytic transformation
 - A prior that is uniforme in a variable is not in general uniform in a transformed variable; a uniform prior in the cross section implies a non-uniform prior (not even linear) on the mass of the sought particle
- In HEP, usually the prior is chosen uniform in the variable with the variable which is proporcional to the cross section of the process sought

Choosing a prior in Bayesian statistics; in practice... 2/

- Uniform priors must make sense
 - Uniform prior across its entire dominion: not very realistic
 - It corresponds to claiming that $P(1 < \theta \le 2)$ is the same as $P(10^{41} < \theta \le 10^{41} + 1)$
 - It's irrational to claim that a prior can cover uniformly forty orders of magnitude
 - We must have a general idea of "meaningful" values for θ , and must not accept results forty orders of magnitude above such meaningful values
- \bullet A uniform prior often implies that its integral is infinity (e.g. for a cross section, the dominion being $[0,\infty]$
 - Achieving a proper normalization of the posterior probability would be a nightmare
- In practice, use a very broad prior that falls to zero very slowly but that is practically zero where the parameter cannot meaningfully lie
 - This does not guarantee that it integrates to 1—it depends on the speed of convergence to zero
 - Improper prior

Choosing a prior in Bayesian statistics; in practice... 3/

- Associating parametric priors to intervals in the parameter space corresponds to considering sets of theories
 - This is because to each value of a parameter corresponds a different theory
- In practical situations, note (Eq. 9) posterior probability is always proportional to the product
 of the prior and the likelihood
 - The prior must not necessarily be uniform across the whole dominion
 - It should be uniform only in the region in which the likelihood is different from zero
- If the prior $\pi(\theta)$ is very broad, the product can sometimes be approximated with the likelihood, $P(\vec{X}|\theta)\pi(H)\sim P(\vec{X}|\theta)$
 - ${\bf o}$ The likelihood function is narrower when the data are more precise, which in HEP often translates to the limit $N\to\infty$
 - In this limit, the likelihood is always dominant in the product
 - The posterior is indipendent of the prior!
 - The posteriors corresponding to different priors must coincide, in this limit

Flat prior

Broad vs narrow non-flat priors

Broad prior vs narrow prior

Broad prior and narrow-vs-peaked likelihood

Short summary on bayesian vs. frequentist

- Frequentists are restricted to statements related to
 - P(data|theory) (kind of deductive reasoning)
 - The data is considered random
 - Each point in the "theory" phase space is treated independently (no notion of probability in the "theory" space)
 - Repeatable experiments
- Bayesians can address questions in the form
 - $P(theory|data) \propto P(data|theory) \times P(theory)$ (it is intuitively what we normally would like to know)
 - It requires a prior on the theory
 - Huge battle on subjectiveness in the choice of the prior goes here see §7.5 of James' book

Drawing some histograms

Random Variables

- Random variable: a numeric label for each element in the space of data (in frequentist statistics) or in the space of the hypotheses (in Bayesian statistics)
- In Physics, usually we assume that Nature can be described by continuous variables
 - The discreteness of our distributions would arise from scanning the variable in a discrete way
 - Experimental limitations in the act of measuring an intrinsically continuous variable)
- Instead of point probabilities we'll work with probabilities defined in intervals, normalized w.r.t. the interval:

$$f(X) := \lim_{\Delta X \to 0} \frac{P(X)}{\Delta X} \tag{10}$$

- Dimensionally, they are densities and they are called probability density functions (p.d.f. s)
- Inverting the expression, $P(X) = \int f(X) dX$ and we can compute the probability of an interval as a definite interval

$$P(a < X < b) := \int_{a}^{b} f(X)dX \tag{11}$$

p.d.f. for many variables

- Extend the concept of p.d.f. to an arbitrary number of variables; the joint p.d.f. f(X, Y, ...)
- If we are interested in the p.d.f. of just one of the variables the joint p.d.f. depends upon, we can compute by integration the marginal p.d.f.

$$f_X(X) := \int f(X, Y)dY \tag{12}$$

Sometimes it's interesting to express the joint p.d.f. as a function of one variable, for a
particular fixed value of the others: this is the conditional p.d.f.:

$$f(X|Y) := \frac{f(X,Y)}{f_Y(Y)} \tag{13}$$

Dispersion and distributions

- Repeated experiments usually don't yield the exact same result even if the physical quantity is expected to be exactly the same
 - Random changes occur because of the imperfect experimental conditions and techniques
 - They are connected to the concept of dispersion around a central value
- When repeating an experiment, we can count how many times we obtain a result contained in various intervals (e.g. how often $1.0 \le L < 1.1$, how often $1.1 \le L < 1.2$, etc)
 - An histogram can be a natural way of recording these frequencies
- The concept of dispersion of measurements is therefore related to that of dispersion of a distribution
- In a distribution we are usually interested in finding a "central" value and how much the various results are dispersed around it

Sources of uncertainty (errors?)

- Two fundamentally different kinds of uncertainties
 - Error: the deviation of a measured quantity from the true value (bias)
 - Uncertainty: the spread of the sampling distribution of the measurements

Random (statistical) uncertainties

- Inability of any measuring device (and scientist) to give infinitely accurate answers
- Even for integral quantities (e.g. counting experiments), fluctuations occur in observations on a small sample drawn from a large population
- They manifest as spread of answers scattered around the true value

Systematic uncertainties

- They result in measurements that are simply wrong, for some reason
- They manifest usually as offset from the true value, even if all the individual results can be consistent
 with each other

Expected values of a random variable

• We define the expected value and mathematical expectation

$$E[X] := \int_{\Omega} X f(X) dX \tag{14}$$

 In general, for each of the following formulas (reported for continuous variables) there is a corresponding one for discrete variables, e.g.

$$E[X] := \sum_{i} X_i P(X_i) \tag{15}$$

Generalizing expected values to functions of random variables

ullet Extend the concept of expected value to a generic function g(X) of a random variable

$$E[g] := \int_{\Omega} g(X)f(X)dX \tag{16}$$

- The previous expression Eq. 14 is a special case of Eq. 16 when g(X) = X
- The mean of X is:

$$\mu := E[X] \tag{17}$$

• The variance of X is:

$$V(X) := E[(X - \mu)^2] = E[X^2] - \mu^2$$
(18)

 Mean and variance will be our way of estimating a "central" value of a distribution and of the dispersion of the values around it

Let's make it funnier: more variables!

- Let our function g(X) be a function of more variables, $\vec{X} = (X_1, X_2, ..., X_n)$ (with p.d.f. $f(\vec{X})$)
 - Expected value: $E(g(\vec{X})) = \int g(\vec{X})f(\vec{X})dX_1dX_2...dX_n = \mu_g$
 - Variance: $V[g] = E[(g \mu_g)^2] = \int (g(\vec{X}) \mu_g)^2 f(\vec{X}) dX_1 dX_2 ... dX_n = \sigma_g^2$
- Covariance: of two variables X, Y:

$$V_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y = \int XYf(X, Y)dXdY - \mu_X \mu_Y$$

- It is also called "error matrix", and sometimes denoted cov[X,Y]
- It is symmetric by construction: $V_{XY} = V_{YX}$, and $V_{XX} = \sigma_X^2$
- To have a dimensionless parameter: correlation coefficient $\rho_{XY} = \frac{v_{XY}}{\sigma_X \sigma_Y}$

- V_{XY} is the expectation for the product of deviations of X and Y from their means
- If having $X > \mu_X$ enhances $P(Y > \mu_Y)$, and having $X < \mu_X$ enhances $P(Y < \mu_Y)$, then $V_{XY} > 0$: positive correlation!
- ρ_{XY} is related to the angle in a linear regression of X on Y (or viceversa)
 - It does not capture non-linear correlations

Fig. 1.9 Scatter plots of random variables x and y with (a) a positive correlation, $\rho=0.75$, (b) a negative correlation, $\rho=-0.75$, (c) $\rho=0.95$, and (d) $\rho=0.25$. For all four cases the standard deviations of x and y are $\sigma_x=\sigma_x=1$.

Take it to the next level: the Mutual Information

- Covariance and correlation coefficients act taking into account only linear dependences
- Mutual Information is a general notion of correlation, measuring the information that two variables X and Y share

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) log\left(\frac{p(x,y)}{p_1(x)p_2(y)}\right)$$

- Symmetric: I(X;Y) = I(Y;X)• I(X;Y) = 0 if and only if X and Y are totally independent
 - X and Y can be uncorrelated but not independent; mutual information captures this!

Related to entropy

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X, Y)$

Does cholesterol increase with exercise?

Does it, though?

- If we know the gender, then prescribe the drug
- If we don't know the gender, then don't prescribe the drug

	Drug	No drug
Men	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Women	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined	273 out of 350 recovered (78%)	289 out of 250 recovered (83%)

- If we know the gender, then prescribe the drug
- If we don't know the gender, then don't prescribe the drug

	Drug	No drug
Men	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Women	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined	273 out of 350 recovered (78%)	289 out of 250 recovered (83%)

- Imagine we know that estrogen has a negative effect on recovery
 - Then women less likely to recovery than men
 - Table shows women are significantly more likely to take the drug

• BP = Blood Pressure

	No drug	Drug
Low BP	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
High BP	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined	273 out of 350 recovered (78%)	289 out of 250 recovered (83%)

• BP = Blood Pressure

	No drug	Drug
Low BP	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
High BP	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined	273 out of 350 recovered (78%)	289 out of 250 recovered (83%)

- Same table, different labels; here we must consider the combined data
 - Lowering blood pressure is actually part of the mechanism of the drug effect

The Simpson paradox: correlation is not causation

- Correlation alone can lead to nonsense conclusions
 - If we know the gender, then prescribe the drug
 - If we don't know the gender, then don't prescribe the drug
- Imagine we know that estrogen has a negative effect on recovery
 - Then women less likely to recovery than men
 - Table shows women are significantly more likely to take the drug
- Here we should consult the separate data, in order not to mix effects
- Same table, different labels; must consider the combined data
 - Lowering blood pressure is actually part of the mechanism of the drug effect
- Same effect in continuous data (cholesterol vs age)
- Bayesian causal networks

	Drug	No drug
Men	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Women	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined	273 out of 350 recovered (78%)	289 out of 250 recovered (83%)
	No drug	Drug
Low BP	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
High BP	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined	273 out of 350 recovered (78%)	289 out of 250 recovered (83%)

Distributions... or not?

- HEP uses histograms mostly historically: counting experiments
- Statistics and Machine Learning communities typically use densities
 - Intuitive relationship with the underlying p.d.f.
 - ullet Kernel density estimates: binning assumption o bandwidth assumption
 - Less focused on individual bin content, more focused on the overall shape
 - More general notion (no stress about the limited bin content in tails)
- In HEP, if your events are then used "as counting experiment" it's more useful the histogram
 - But for some applications (e.g. Machine Learning) even in HEP please consider using density estimates

Plots from TheGlowingPython and TowardsDataScience

The Binomial distribution

Binomial p.d.f.

Binomial

- Discrete variable: r, positive integer < N
- Parameters:
 - N. positive integer • p, 0
- Probability function: $P(r) = {\binom{N}{r}} p^r (1-p)^{N-r}, r = 0, 1, ..., N$
- E(r) = Np, V(r) = Np(1-p)
- Usage: probability of finding exactly r successes in N trials. The distribution of the number of events in a single bin of a histogram is binomial (if the bin contents are independent)

- Example: which is the probability of obtaining 3 times the number 6 when throwing a 6-faces die 12 times?
- $N = 12, r = 3, p = \frac{1}{6}$
- $P(3) = {12 \choose 3} \left(\frac{1}{6}\right)^3 (1 \frac{1}{6})^{12 3} = \frac{12!}{3!9!} \frac{1}{6^3} \left(\frac{5}{6}\right)^9 = 0.1974$

The Poisson distribution

Poisson

- Discrete variable: r, positive integer
- Parameter: μ, positive real number
- Probability function: $P(r) = \frac{\mu^r e^{-\mu}}{r!}$
- E(r) = μ, V(r) = μ
 Usage: probability of finding exactly r events in a given amount of time, if events occur at a constant rate.
- Example: is it convenient to put an advertising panel along a road?

- Probability that at least one car passes through the road on each day, knowing on average 3 cars pass each day
 - P(X > 0) = 1 P(0), and use Poisson p.d.f.

$$P(0) = \frac{3^0 e^{-3}}{0!} = 0.049787$$

- P(X > 0) = 1 0.049787 = 0.95021.
- Now suppose the road serves only an industry, so it is unused during the weekend; Which is the probability that in any given day exactly one car passes by the road?

$$N_{avg per dia} = \frac{3}{5} = 0.6$$

 $P(X) = \frac{0.6^1 e^{-0.6}}{1!} = 0.32929$

The Gaussian distribution

• Gaussian or Normal distribution

- Variable: X, real number
- Parameters:
 - μ, real number
 - σ, positive real number
- Probability function:

$$f(X) = N(\mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} exp \left[-\frac{1}{2} \frac{(X - \mu)^2}{\sigma^2} \right]$$

- $E(X) = \mu, V(X) = \sigma^2$
- Usage: describes the distribution of independent random variables. It is also the high-something limit for many other distributions

The χ^2 distribution

- Parameter: integer N > 0 degrees of freedom
- Continuous variable $X \in \mathcal{R}$
- p.d.f., expected value, variance

$$f(X) = \frac{\frac{1}{2} \left(\frac{X}{2}\right)^{\frac{N}{2} - 1} e^{-\frac{X}{2}}}{\Gamma\left(\frac{N}{2}\right)}$$
$$E[r] = N$$
$$V(r) = 2N$$

• It describes the distribution of the sum of the squares of a random variable, $\sum_{i=1}^{N} X_i^2$

Reminder: $\Gamma() := \frac{N!}{r!(N-r)!}$

The χ^2 distribution: why degrees of freedom?

UCLouvain

Institut de recherche
en mathématique et physique

- Sample randomly from a Gaussian p.d.f., obtaining X_1 y X_2
- $Q = X_1^2 + X_2^2$ (or in general $Q = \sum_{i=1}^N X_i^2$) is itself a random variable
- What is $P(Q \ge 6)$? Just integrate the $\chi^2(N=2)$ distribution from 6 to ∞ Depends only on N!
 - If we sample 12 times from a Gaussian and compute $Q = \sum_{i=1}^{12} X_i^2$, then $Q \sim \chi^2(N=12)$
- Theorem: if $Z_1,...,Z_N$ is a sequence of normal random variables, the sum $V=\sum_{i=1}^N Z_i^2$ is distributed as a $\chi^2(N)$
 - The sum of squares is closely linked to the variance $E[(X \mu)^2] = E[X^2] \mu^2$ from Eq. 18
- ullet The χ^2 distribution is useful for goodness-of-fit tests that check how much two distributions diverge point-by-point
- It is also the large-sample limit of many distributions (useful to simplify them to a single parameter)

The χ^2 distribution: goodness-of-fit tests 1/

Institut de recherche en mathématique et physique

- Consider a set of M measurements $\{(X_i, Y_i)\}$
- Suppose Y_i are affected by a random error representable by a gaussian with variance σ_i
 Consider a function g(X) with predictive capacity, i.e. such that for each i we have g(X_i) ∼ Y_i
- Pearson's x² function related to the difference between the prediction and the experimental measurement in each point

$$\chi_P^2 := \sum_{i=1}^M \left[\frac{Y_i - g(X_i)}{\sigma_i} \right]^2 \tag{19}$$

- Neyman's χ^2 is a similar expression under some assumptions
 - If the gaussian error on the measurements is constant, it can be factorized
 - If Y_i represent event counts $Y_i = n_i$, then the errors can be approximated with $\sigma_i \propto \sqrt{n_i}$

$$\chi_N^2 := \sum_{i=1}^M \frac{\left(n_i - g(X_i)\right)^2}{n_i} \tag{20}$$

The χ^2 distribution: goodness-of-fit tests 2/

- If $g(X_i) \sim Y_i$ (i.e. g(X) reasonably predicts the data), then each term of the sum is approximately 1
- Consider a function of $\chi^2_{N,P}$ and of the number of measurements M
 - $E[f(\chi_{NP}^2, M)] = M$
 - The function is analytically a χ^2 :

$$f(\chi^2, M) = \frac{2^{-\frac{M}{2}}}{\Gamma(\frac{N}{2})} \chi^{N-2} e^{-\frac{\chi^2}{2}}$$
 (21)

The cumulative of f is

$$1 - cum(f) = P(\chi^2 > \chi^2_{obs}|g(x) \text{ is the correct model})$$
 (22)

- Comparing χ^2 with the number of degrees of freedom M, we therefore have a criterion to test for goodness-of-fit
 - \bullet For a given M, the p.d.f. is known $(\chi^2(M))$ and the observed value can be computed and compared with it
 - Null hypothesis: there is no difference between prediction and observation (i.e. g fits well the data)
 - Alternative hypothesis: there is a significant difference between prediction and observation
 - Under the null, the sum of squares is distributed as a $\chi^2(M)$
 - ullet p-values can be calculated by integration of the χ^2 distribution

$$\frac{\chi^2}{M} \sim 1 \Rightarrow g(X)$$
 approximates well the data

$$\frac{\chi^2}{M} >> 1 \Rightarrow$$
 poor model (increases χ^2), or statistically improbable fluctuation (23)

$$\frac{\chi^2}{M}$$
 $<<$ 1 \Rightarrow overestimated σ_i , or fraudulent data, or statistically improbable fluctuation

The χ^2 distribution: goodness-of-fit tests 3/

- $\chi^2(M)$ tends to a Normal distribution for $M \to \infty$
 - Slow convergence
 - It is generally not a good idea to substitute a χ^2 distribution with a Gaussian
- ullet The goodness of fit seen so far is valid only if the model (the function g(X)) is fixed
- Sometimes the model has k free parameters that were not given and that have been fit to the data
- Then the observed value of χ^2 must be compared with $\chi^2(N')$, with N'=N-k degrees of freedom
 - N' = N k are called reduced degrees of freedom
 - This however works only if the model is linear in the parameters
 - If the model is not linear in the parameters, when comparing χ^2_{obs} with $\chi^2(N-k)$ then the p-values will be deceptively small!
- Variant of the χ^2 for small datasets: the G-test
 - $g = 2 \sum_{i} O_{ii} ln(O_{ii}/E_{ii})$
 - It responds better when the number of events is low (Petersen 2012)

Some relationships among distributions

• It is often convenient to know the asymptotic properties of the various distributions

Estimating a physical quantity

Information, the Fisher way

- The information of a set of observations should increase with the number of observations
 - Double the data should result in double the information if the data are independent
- Information should be <u>conditional on what we want to learn</u> from the experiment
 - Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis
- Information should be related to precision
 - The greatest the information carried by the data, the better the precision of our result

The Likelihood Principle — 1

- Common enunciation: given a set of observed data \vec{x} , the likelihood function $L(\vec{x};\theta)$ contains all the information that is relevant to the estimation of the parameter θ contained in the data sample
 - The likelihood function is seen as a function of θ , for a fixed set (a particular realization) of observed data \vec{x}
 - The likelihood is used to define the information contained in a sample
- Bayesian statistics automatically satisfies it
 - $P(\theta|\vec{x}) \propto L(\vec{x};\theta) \times \pi(\theta)$: the only quantity depending on the dats is the likelihood
 - Information as a broad way of saying all the possible inferences about θ
 - "Probably tomorrow will rain"
- Frequentist statistics: *information* more strictly as *Fisher information* (connection with curvature of $L(\vec{x}; \theta)$)
 - Usually does not comply (have to consider the hypothetical set of data that might have been obtained)
 - Need to recast question in terms of hypotetical data
 - Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of correct forecasts by the grandpa feeling arthritis in the shoulder
 - "The sentence -tomorrow it will rain- is probably true"
- The Likelihood Principle is quite vague: no practical prescription for drawing inference from the likelihood
 - Bayesian Maximum a-posteriori (MAP) estimator automatically maximizes likelihood
 - Maximum Likelihood estimator (MLE) maximizes likelihood automatically, but some foundational issues

The Likelihood Principle — 2

- Two likelihoods differing by only a normalization factor are equivalent
 - Implies that information resides in the shape of the likelihood
- ullet George Bernard: replace a dataset D with a dataset D+Z, where Z is the result of tossing a coin
 - ullet Assume that the coin toss is independent on the parameter heta you seek to determine
 - Sampling probability: $p(DZ|\theta) = p(D|\theta)p(Z)$
 - ullet The coin toss tells us nothing about the parameter heta beyond what we already learn by considering D only
 - Any inference we do with D must therefore be the same as any inference we do with D+Z
 - In particular, normalizations cancel out in ratio: $\frac{\mathcal{L}_1}{\mathcal{L}_2} = \frac{p(DZ|\theta_1I)}{p(DZ|\theta_2I)} = \frac{p(D|\theta_1I)}{p(D|\theta_2I)}$
- Do you believe probability comes from the imperfect knowledge of the observer?
 - Then the likelihood principle does not seem too profound besides the mathematical simplifications it allows
- Do you believe that probability is a physical phaenomenon arising from randomness?
 - Then the likelihood principle has for you a profound meaning of valid principle of inference

Likelihood and Fisher Information

- The narrowness of the likelihood can be estimated by looking at its curvature
- The curvature is the second derivative with respect to the parameter of interest
- A very narrow (peaked) likelihood is characterized by a very large and positive $-\frac{\partial^2 \ln L}{\partial \theta^2}$
- The second derivative of the likelihood is linked to the Fisher Information

$$I(\theta) = -E\left[\frac{\partial^2 lnL}{\partial \theta^2}\right] = E\left[\left(\frac{\partial lnL}{\partial \theta}\right)^2\right]$$

Likelihood and Fisher Information

- ullet A very narrow likelihood will provide much information about $heta_{true}$
 - The posterior probability will be more localized than the prior in the regimen in which the likelihood function dominates the product $L(\vec{x}; \vec{\theta}) \times \pi$
 - The Fisher Information will be large
- A very broad likelihood will not carry much information, and in fact the computed Fisher Information will turn out to be small

Fisher Information and Jeffreys priors

- When changing variable, the change of parameterization must not result in a change of the information
 - The information is a property of the data only, through the likelihood—that summarizes them completely (likelihood principle)
- Search for a parametrization $\theta'(\theta)$ in which the Fisher Information is constant
- Compute the prior as a function of the new variable

$$\begin{split} \pi(\theta) &= \pi(\theta') \left| \frac{d\theta'}{d\theta} \right| \propto \sqrt{E \left[\left(\frac{\partial lnN}{\partial \theta'} \right)^2 \right] \left| \frac{\partial \theta'}{\partial \theta} \right|} \\ &= \sqrt{E \left[\left(\frac{\partial lnL}{\partial \theta'} \frac{\partial \theta'}{\partial \theta} \right)^2 \right]} \\ &= \sqrt{E \left[\left(\frac{\partial lnL}{\partial \theta} \right)^2 \right]} \\ &= \sqrt{I(\theta)} \end{split}$$

- For any θ , $\pi(\theta) = \sqrt{I(\theta)}$; with this choice, the information is constant under changes of variable
- Such priors are called <u>Jeffreys priors</u>, and assume different forms depending on the type of parametrization
 - Location parameters: uniform prior
 - Scale parameters: prior $\propto \frac{1}{\theta}$
 - Poisson processes: prior $\propto \frac{1}{\sqrt{\theta}}$

Sufficient statistic and data reduction

- A test statistic is a function of the data (a quantity derived from the data sample)
- A statistic T = T(X) is sufficient for θ if the density function f(X|T) is independent of θ
 - If T is a sufficient statistic for θ , then also any strictly monotonic g(T) is sufficient for θ
- The statistic T carries as much information about θ as the original data X
 - No other function can give any further information about θ
 - Same inference from data X with model M and from sufficient statistic T(X) with model M'

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x} = \frac{1+2+3+4+5}{5} = 3$
 - Imagine we don't have the data; we only know that the sample mean is 3
 - Is the sample mean a sufficient statistic?

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x} = \frac{1+2+3+4+5}{5} = 3$
 - Imagine we don't have the data; we only know that the sample mean is 3
 - Is the sample mean a sufficient statistic?
 - Since the sample mean is 3, we also estimate the population mean to be 3
 - Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our estimate for the population mean

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x} = \frac{1+2+3+4+5}{5} = 3$
 - Imagine we don't have the data; we only know that the sample mean is 3
 - Is the sample mean a sufficient statistic?
 - Since the sample mean is 3, we also estimate the population mean to be 3
 - Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our estimate for the population mean
- Binomial test in coin toss
 - Record heads and tails, with their order: HTTHHHTHHTTHTHTH
 - Can we somehow improve by identifying a sufficient statistic?

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x} = \frac{1+2+3+4+5}{5} = 3$
 - Imagine we don't have the data; we only know that the sample mean is 3
 - Is the sample mean a sufficient statistic?
 - Since the sample mean is 3, we also estimate the population mean to be 3
 - Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our estimate for the population mean
- Binomial test in coin toss
 - Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
 - Can we somehow improve by identifying a sufficient statistic?
 - What happens if we record only the number of heads? (remember that the binomial p.d.f. is: $P(r) = \binom{N}{r} p^r (1-p)^{N-r}, r=0,1,...,N$

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x} = \frac{1+2+3+4+5}{5} = 3$
 - Imagine we don't have the data; we only know that the sample mean is 3
 - Is the sample mean a sufficient statistic?
 - Since the sample mean is 3, we also estimate the population mean to be 3
 - Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our estimate for the population mean
- Binomial test in coin toss
 - Record heads and tails, with their order: HTTHHHTHHTTHTHTH
 - Can we somehow improve by identifying a sufficient statistic?
 - What happens if we record only the number of heads? (remember that the binomial p.d.f. is: $P(r) = \binom{N}{r} p^r (1-p)^{N-r}, r=0,1,...,N$
 - Recording only the number of heads (no tails, no order) gives exactly the same information
 - Data can be reduced; we only need to store a sufficient statistic
 - Storage needs are reduced

Ancillary statistic and pivotal quantities

Institut de recherche

- Pivotal quantity: its distribution does not depend on the parameters
 - For a $Gaussian(\mu,\sigma^2)$ p.d.f., $rac{ar{x}-\mu}{s/\sqrt{N}}\sim t_{\it student}$ is a pivot

- Ancillary statistic for a parameter θ : a statistic f(X) which does not depend on θ
 - Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all Fisher information about θ
- An ancillary statistic can give information about θ even if it does not depend on it!
 - Sample X_1 and X_2 from $P_{\theta}(X=\theta)=P_{\theta}(X=\theta+1)=P_{\theta}(X=\theta+2)=\frac{1}{3}$
 - Ancillary statistic: $R := X_2 X_1$ (no information about θ)
 - Minimal sufficient statistic: $M := \frac{X_1 + X_2}{2}$
 - Sample point (M=m,R=r): either $\theta=m,$ or $\theta=m-1,$ or $\theta=m-2$
 - If R=2, then necessarily $X_1=m-1$ and $X_2=m-2$; Therefore necessarily $\theta=m-1$
- Knowledge of R alone carries no information on θ , but increases the precision on an estimate of θ (Cox, Efron, Hinckley)!
- Powerful tool to improve data reduction capabilities (save money...)
- Also employed for asymptotic likelihood expressions
 - Also impact on approximate expressions for significance (evolution of my proceedings in preparation as paper

Estimators

- Set $\vec{x} = (x_1, ..., x_N)$ of N statistically independent observations x_i , sampled from a p.d.f. f(x).
- Mean and width of f(x) (or some parameter of it: $f(x; \vec{\theta})$, with $\vec{\theta} = (\theta_1, ..., \theta_M)$ unknown)
 - In case of a linear p.d.f., the vector of parameters would be $\vec{\theta} = (intercept, slope)$
- We call <u>estimator</u> a function of the observed data \vec{x} which returns numerical values $\hat{\vec{\theta}}$ for the vector $\vec{\theta}$.
- $\vec{\theta}$ is (asymptotically) <u>consistent</u> if it converges to $\vec{\theta}_{true}$ for large N:

$$\lim_{N\to\infty} \hat{\vec{\theta}} = \vec{\theta}_{true}$$

- ullet $\hat{ec{ heta}}$ is <u>unbiase</u>d if its bias is zero, $ec{b}=0$
 - Bias of $\hat{\vec{\theta}}$: $\vec{b} := E[\hat{\vec{\theta}}] \vec{\theta}_{true}$
 - If bias is known, can redefine $\hat{\vec{\theta}}' = \hat{\vec{\theta}} \vec{b}$, resulting in $\vec{b}' = 0$.

Plot from James, 2nd ed.

 An estimator is <u>robust</u> when it is insensitive to small deviations from the underlying distribution (p.d.f.) assumed (ideally, one would want <u>distribution-free</u> estimates, without assumptions on the underlying p.d.f.)

The Maximum Likelihood Method 1/

- Let $\vec{x} = (x_1, ..., x_N)$ be a set of N statistically independent observations x_i , sampled from a p.d.f. $f(x; \vec{\theta})$ depending on a vector of parameters
- Under independence of the observations, the likelihood function factorizes to the individual p.d.f. s

$$L(\vec{x}; \vec{\theta}) = \prod_{i=1}^{N} f(x_i, \vec{\theta})$$

• The maximum-likelihood estimator is the $\vec{\theta}_{ML}$ which maximizes the joint likelihood

$$\vec{\theta}_{ML} := argmax_{\theta} \left(L(\vec{x}, \vec{\theta}) \right)$$

- The maximum must be global
- Numerically, it's usually easier to minimize

$$-\ln L(\vec{x}; \vec{\theta}) = -\sum_{i=1}^{N} \ln f(x_i, \vec{\theta})$$

- Easier working with sums than with products
- Easier minimizing than maximizing
- If the minimum is far from the range of permitted values for $\vec{\theta}$, then the minimization can be performed by finding solutions to

$$-\frac{lnL(\vec{x};\vec{\theta})}{\partial\theta_i} = 0$$

• It is assumed that the p.d.f. s are correctly normalized, i.e. that $\int f(\vec{x}; \vec{\theta}) dx = 1$ (\rightarrow integral does not depend on $\vec{\theta}$)

The Maximum Likelihood Method 2/

- Solutions to the likelihood minimization are found via numerical methods such as MINOS.
 - Fred James' Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html
- $\vec{\theta}_{ML}$ is an estimator \rightarrow let's study its properties!

 - **Onsistent:** $\lim_{N\to\infty} \vec{\theta}_{ML} = \vec{\theta}_{true};$ **Unbiased:** only asymptotically. $\vec{b} \propto \frac{1}{N}$, so $\vec{b} = 0$ only for $N \to \infty$;
 - **3** Efficient: $V[\vec{\theta}_{ML}] = \frac{1}{I(\theta)}$
 - **1 Invariant:** for change of variables $\psi = g(\theta)$; $\hat{\psi}_{ML} = g(\vec{\theta}_{ML})$
- \bullet $\vec{\theta}_{ML}$ is only asymptotically unbiased, and therefore it does not always represent the best trade-off between bias and variance
- Remember that in frequentist statistics $L(\vec{x}; \vec{\theta})$ is not a p.d.f. . In Bayesian statistics, the posterior probability is a p.d.f.:

$$P(\vec{\theta}|\vec{x}) = \frac{L(\vec{x}|\vec{\theta})\pi(\vec{\theta})}{\int L(\vec{x}|\vec{\theta})\pi(\vec{\theta})d\vec{\theta}}$$

• Note that if the prior is uniform, $\pi(\vec{\theta}) = k$, then the MLE is also the maximum of the posterior probability, $\vec{\theta}_{ML} = maxP(\vec{\theta}|\vec{x})$.

ullet A nuclear decay with half-life au is described by the p.d.f., expected value, and variance

$$f(t;\tau) = \frac{1}{\tau}e^{-\frac{t}{\tau}}$$

$$E[f] = \tau$$

$$V[f] = \tau^2$$

- Sampling N independent measurements t_i from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.

ullet A nuclear decay with half-life au is described by the p.d.f., expected value, and variance

$$f(t;\tau) = \frac{1}{\tau}e^{-\frac{t}{\tau}}$$
$$E[f] = \tau$$
$$V[f] = \tau^{2}$$

- Sampling N independent measurements t_i from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$f(t_1,...t_N;\tau) = \prod_i f(t_i;\tau)$$

ullet A nuclear decay with half-life au is described by the p.d.f., expected value, and variance

$$f(t;\tau) = \frac{1}{\tau}e^{-\frac{t}{\tau}}$$
$$E[f] = \tau$$
$$V[f] = \tau^{2}$$

- Sampling N independent measurements t_i from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$f(t_1,...t_N;\tau) = \prod_i f(t_i;\tau)$$

• For a particular set of N measurements t_i , the p.d.f. can be written as a function of τ only, $L(\tau) := f(t_i; \tau)$

ullet A nuclear decay with half-life au is described by the p.d.f., expected value, and variance

$$f(t;\tau) = \frac{1}{\tau}e^{-\frac{t}{\tau}}$$
$$E[f] = \tau$$
$$V[f] = \tau^{2}$$

- Sampling N independent measurements t_i from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$f(t_1,...t_N;\tau)=\prod_i f(t_i;\tau)$$

- For a particular set of N measurements t_i , the p.d.f. can be written as a function of τ only, $L(\tau) := f(t_i; \tau)$
- Now all you need to do is to maximize the likelihood

ullet A nuclear decay with half-life au is described by the p.d.f., expected value, and variance

$$f(t;\tau) = \frac{1}{\tau}e^{-\frac{t}{\tau}}$$

$$E[f] = \tau$$

$$V[f] = \tau^{2}$$

- Sampling N independent measurements t_i from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$f(t_1,...t_N;\tau)=\prod_i f(t_i;\tau)$$

- For a particular set of N measurements t_i , the p.d.f. can be written as a function of τ only, $L(\tau) := f(t_i; \tau)$
- Now all you need to do is to maximize the likelihood
- The logarithm of the likelihood, $lnL(\tau) = \sum \left(ln\frac{1}{\tau} \frac{t_i}{\tau}\right)$, can be maximized analytically

$$\frac{\partial lnL(\tau)}{\partial \tau} = \sum_{i} \left(-\frac{1}{\tau} + \frac{t_i}{\tau^2} \right) \equiv 0$$

UCLouvain
Institut de recherche
en mathématique et physique

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?

UCLouvain

Institut de recherche
en mathématique et physique

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

• What is the variance? Which is its relationship to *N*? Is the estimator efficient?

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

- What is the variance? Which is its relationship to *N*? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$V[\hat{\tau}] = V\left[\frac{1}{N}\sum_{i} t_{i}\right] = \frac{1}{N^{2}}\sum_{i} V[t_{i}] = \frac{\tau^{2}}{N}$$

UCLouvain

Institut de recherche
en mathématique et physique

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

- What is the variance? Which is its relationship to N? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$V[\hat{\tau}] = V\left[\frac{1}{N}\sum_{i} t_{i}\right] = \frac{1}{N^{2}}\sum_{i} V[t_{i}] = \frac{\tau^{2}}{N}$$

• The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau} = \hat{\tau}_{ML} = \frac{t_1 + \dots + t_N}{N}$ $\hat{\tau} = \frac{t_1 + \dots + t_N}{N - 1}$			
$\hat{\tau} = t_i$			

UCLouvain

Institut de recherche
en mathématique et physique

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

- What is the variance? Which is its relationship to *N*? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$V[\hat{\tau}] = V\left[\frac{1}{N}\sum_{i} t_{i}\right] = \frac{1}{N^{2}}\sum_{i} V[t_{i}] = \frac{\tau^{2}}{N}$$

• The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau} = \hat{\tau}_{ML} = \frac{t_1 + \dots + t_N}{N}$ $\hat{\tau} = \frac{t_1 + \dots + t_N}{N - 1}$ $\hat{\tau} = t_i$	✓	✓	✓
$\tau = \iota_i$			

UCLouvain

Institut de recherche
en mathématique et physique

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

- What is the variance? Which is its relationship to *N*? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$V[\hat{\tau}] = V\left[\frac{1}{N}\sum_{i} t_{i}\right] = \frac{1}{N^{2}}\sum_{i} V[t_{i}] = \frac{\tau^{2}}{N}$$

The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau} = \hat{\tau}_{ML} = \frac{t_1 + \ldots + t_N}{N}$	✓	✓	√
$\hat{\tau} = \frac{t_1 + \ldots + t_N}{N - 1}$	✓	×	X
$\hat{\tau} = t_i$			

UCLouvain

Institut de recherche
en mathématique et physique

The maximum-likelihood estimator is

$$\hat{\tau}(t_1,...,t_N) = \frac{1}{N} \sum_i t_i$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}] = \tau$, and the estimator is unbiased:

$$b = E[\hat{\tau}] - E[f] = \tau - \tau = 0$$

- What is the variance? Which is its relationship to *N*? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$V[\hat{\tau}] = V\left[\frac{1}{N}\sum_{i} t_{i}\right] = \frac{1}{N^{2}}\sum_{i} V[t_{i}] = \frac{\tau^{2}}{N}$$

• The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau} = \hat{\tau}_{ML} = \frac{t_1 + \ldots + t_N}{N}$	✓	✓	√
$\hat{\tau} = \frac{t_1 + \ldots + t_N}{N - 1}$	✓	X	X
$\hat{ au}=t_i$	X	✓	X

Why $\hat{\tau} = t_i$ is unbiased

- Bias: $b = E[\hat{\tau}] \tau$
 - Note: if you don't know the true value, you must simulate the bias of the method
 - Generate toys with known parameters, and check what is the estimate of the parameter for the toy data
 - If there is a bias, correct for it to obtain an unbiased estimator
- ullet t_i is an individual observation, which is still sampled from the original factorized p.d.f.

$$f(t_i;\tau) = \frac{1}{\tau}e^{-\frac{t_i}{\tau}}$$

- The expected value of t_i is therefore still $E[\hat{\tau}] = E[t_i] = \tau$
- $\hat{\tau} = t_i$ is therefore unbiased!

	Consistente	Insesgado	Eficiente
$\hat{\tau} = t_i$	X	✓	X

Bias-variance tradeoff and optimal variance 1/

- \bullet We usually want to optimize both bias \vec{b} and variance $V[\hat{\vec{\theta}}]$
- While we can optimize each one separately, optimizing them <u>simultaneously</u> leads to none being optimally optimized, in genreal
 - Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
 of the two properties
- The variance is linked to the width of the likelihood function, which naturally leads to linking it to the curvature of $L(\vec{x}; \vec{\theta})$ near the maximum
- However, the curvature of $L(\vec{x}; \vec{\theta})$ near the maximum is linked to the Fisher information, as we have seen
- Information is therefore a limiting factor for the variance (no data set contains infinite information, variance cannot collapse to zero)
- Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

$$V[\hat{\theta}] \ge \frac{1}{\hat{\theta}}$$

Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

$$V[\hat{\theta}] \ge \frac{(1+\partial b/\partial \theta)^2}{-E[\partial^2 lnL/\partial \theta^2]}$$

- In multiple dimensions, this is linked with the Fisher Information Matrix: $I_{ii} = E \left[\partial^2 ln L / \partial \theta_i \partial \theta_i \right]$
- Approximations
 - Neglect the bias (b = 0)
 - Inequality is an approximate equality (true for large data samples)

•
$$V[\hat{\theta}] \simeq \frac{1}{-E\left[\partial^2 \ln L/\partial \theta^2\right]}$$

- Estimate of the variance of the estimate of the parameter!
- $\hat{V}[\hat{ heta}] \simeq rac{1}{-E\left[\partial^2 lnL/\partial heta^2
 ight]|_{ heta=t\hat{h}\hat{e}ta}}$

• For multidimensional parameters, we can build the information matrix with elements:

$$I_{jk}(\vec{\theta}) = -E \left[\sum_{i}^{N} \frac{\partial^{2} lnf(x_{i}; \vec{\theta})}{\partial \theta_{k} \partial \theta_{k}} \right]$$
$$= N \int \frac{1}{f} \frac{\partial f}{\partial \theta_{j}} \frac{\partial f}{\partial \theta_{k}} dx$$

• (the last equality is due to the integration interval not being dependent on $\vec{\theta}$)

Estimating variance non-analytically

- We have calculated the variance of the MLE in the simple case of the nuclear decay
- Analytic calculation of the variance is not always possible
- Write the variance approximately as:

$$V[\hat{\theta}] \ge \frac{\left(1 + \frac{\partial b}{\partial \theta}\right)^2}{-E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]}$$

- This expression is valid for any estimator, but if applied to the MLE then we can note $\vec{\theta}_{ML}$ is efficient and asymptotically unbiased
- Therefore, when $N \to \infty$ then b=0 and the variance approximate to the RCF bound, and \geq becomes \simeq :

$$V[\vec{\theta}_{ML}] \simeq \frac{1}{-E\left[\frac{\partial^2 lnL}{\partial \theta^2}\right]\Big|_{\theta = \vec{\theta}_{ML}}}$$

How to extract an interval from the likelihood function 1/

• For a Gaussian p.d.f., $f(x; \vec{\theta}) = N(\mu, \sigma)$, the likelihood can be written as:

$$L(\vec{x}; \vec{\theta}) = ln \left[-\frac{(\vec{x} - \vec{\theta})^2}{2\sigma^2} \right]$$

• Moving away from the maximum of $L(\vec{x}; \vec{\theta})$ by one unit of σ , the likelihood assumes the value $\frac{1}{2}$, and the area enclosed in $[\vec{\theta} - \sigma, \vec{\theta} + \sigma]$ will be—because of the properties of the Normal distribution—equal to 68.3%.

How to extract an interval from the likelihood function 2/

We can therefore write

$$P((\vec{x} - \vec{\theta})^2 \le \sigma)) = 68.3\%$$

$$P(-\sigma \le \vec{x} - \vec{\theta} \le \sigma) = 68.3\%$$

$$P(\vec{x} - \sigma \le \vec{\theta} \le \vec{x} + \sigma) = 68.3\%$$

- Taking into account that it is important to keep in mind that probability is a property of <u>sets</u>, in frequentist statistics
 - Confidence interval: interval with a fixed probability content
- This process for computing a confidence interval is exact for a Gaussian p.d.f.
 Pathological cases reviewed later on (confidence belts and Neyman construction)
- Practical prescription:
 - Point estimate by computing the Maximum Likelihood Estimate
 - Confidence interval by taking the range delimited by the crossings of the likelihood function with $\frac{1}{2}$ (for 68.3% probability content, or 2 for 95% probability content— 2σ , etc)

How to extract an interval from the likelihood function 3/

- ullet MLE is invariant for monotonic transformations of heta
 - This applies not only to the maximum of the likelihood, but to all relative values
 - The likelihood <u>ratio</u> is therefore an invariant quantity (we'll use it for hypothesis testing)
 - Can transform the likelihood such that $log(L(\vec{x}; \vec{\theta}))$ is parabolic, but <u>not necessary</u> (MINOS/Minuit)
- When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian tails...
 - This yields symmetric approximate intervals
 - The approximation is often good even for small amounts of data
- ...or use asymmetric intervals by just looking at the crossing of the $log(L(\vec{x}; \vec{\theta}))$ values
 - Naturally-arising asymmetrical intervals
 - No gaussian approximation
- In any case (even asymmetric intervals) still based on asymptotic expansion
 - Method is exact only to $\mathcal{O}(\frac{1}{N})$

Plot from James, 2nd ed.

And in many dimensions...

UCLouvain
Institut de recherche
en mathématique et physique

- ullet Construct $log\mathcal{L}$ contours and determine confidence intervals by MINOS
- Elliptical contours correspond to gaussian Likelihoods
 - The closer to MLE, the more elliptical the contours, even in non-linear problems
 - All models are linear in a sufficiently small region
 - Nonlinear regions not problematic (no parabolic transformation of $log\mathcal{L}$ needed)
 - MINOS accounts for non-linearities by following the likelihood contour

 Confidence intervals for each parameter

$$\max_{\theta_i, j \neq i} log \mathcal{L}(\theta) = log \mathcal{L}(\hat{\theta}) - \lambda$$

•
$$\lambda = \frac{Z_{1-\beta}^2}{2}$$

•
$$\lambda = 1/2 \text{ for } \beta = 0.683 \text{ ("}1\sigma\text{"})$$

•
$$\lambda = 2 \text{ for } \beta = 0.955 \text{ ("}2\sigma\text{"})$$

Plot from James, 2nd ed.

What if I have systematic uncertainties? /1

- Parametrize them into the likelihood function; conventional separation of parameters in two classes
 - the Parameter(s) of Interest (POI), often representing σ/σ_{SM} and denoted as μ (signal strength)
 - the parameters representing uncertainties, nuisance parameters θ
- H_0 : $\mu = 0$ (Standard Model only, no Higgs)
- H_1 : $\mu = 1$ (Standard Model + Standard Model Higgs)
- Find the maximum likelihood estimates (MLEs) $\hat{\mu}$, $\hat{\theta}$
- Find the conditional MLE $\hat{\theta}(\mu)$, i.e. the value of θ maximizing the likelihood function for each fixed value of μ
- Write the test statistics as $\lambda(\mu) = \frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta})}$
 - Independent on the nuisance parameters (profiled, i.e. their MLE has been taken as a function of each value of μ)
 - Can even "freeze" them one by one to extract their contribution to the total uncertainty
- To model the nuisance parameters you can reparameterize them as $\alpha(\theta)$ introducing an explicit "p.d.f." for them $\mathcal{L}(n, \alpha^0 | \mu, \alpha) = \prod_{i \in \mathit{bins}} \mathcal{P}(n_i | \mu S_i(\alpha) + B_i(\alpha)) \times \prod_{j \in \mathit{syst}} \mathcal{G}(\alpha_j^0 | \alpha_j, \delta \alpha_j)$
 - The likelihood ratio is then $\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\hat{\alpha}}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\hat{\alpha}})}$

What if I have systematic uncertainties? /2

- The likelihood ratio $\lambda(\mu) = \frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta})}$
- Conceptually, you can run the experiment many times (e.g. toys) and record the value of the test statistic
- The test statistic can therefore be seen as a distribution
- Asymptotically, $\lambda(\mu) \sim exp\Big[-\frac{1}{2}\chi^2\Big]\Big(1+\mathcal{O}(\frac{1}{\sqrt{N}})\Big)$ (Wilks Theorem, under some regularity conditions—continuity of the likelihood and up to 2nd derivatives, existence of a maximum, etc)
 - The χ^2 distribution depends only on a single parameter, the number of degrees of freedom
 - It follows that the test statistic is independent of the values of the nuisance parameters
 - Useful: you don't need to make toys in order to find out how is $\lambda(\mu)$ distributed!

Vischia

How to extract an interval from the likelihood function

• Theorem: for any p.d.f. $f(x|\vec{\theta})$, in the large numbers limit $N\to\infty$, the likelihood can always be approximated with a gaussian:

$$L(\vec{x}; \vec{\theta}) \propto_{N \to \infty} e^{-\frac{1}{2}(\vec{\theta} - \vec{\theta}_{ML})^T H(\vec{\theta} - \vec{\theta}_{ML})}$$

- where H is the information matrix $I(\vec{\theta})$.
- Under these conditions, $V[\vec{\theta}_{ML}] \to \frac{1}{I(\vec{\theta}_{ML})}$, and the intervals can be computed as:

$$\Delta lnL := lnL(\theta') - lnL_{max} = -\frac{1}{2}$$

- The resulting interval has in general a larger probability content than the one for a gaussian p.d.f., but the approximation grows better when N increases
 - The interval overcovers the true value $\vec{\theta}_{true}$

How to extract an interval from the likelihood function—interpretation

- $\vec{\theta}_{true}$ is therefore stimated as $\hat{\theta} = \vec{\theta}_{ML} \pm \sigma$. This is another situation in which frequentist and Bayesian statistics differ in the interpretation of the numerical result
- Frequentist: $\vec{\theta}_{true}$ is fixed
 - "if I repeat the experiment many times, computing each time a confidence interval around $\vec{\theta}_{ML}$, on average 68.3% of those intervals will contain $\vec{\theta}_{mue}$ "
 - Coverage: "the interval covers the true value with 68.3% probability"
 - Direct consequence of the probability being a property of <u>data sets</u>
- Bayesian: $\vec{\theta}_{true}$ is not fixed
 - "the true value $\vec{\theta}_{true}$ will be in the range $[\vec{\theta}_{ML} \sigma, \vec{\theta}_{ML} + \sigma]$ with a probability of 68.3%"
 - ullet This corresponds to giving a value for the posterior probability of the parameter $ec{ heta}_{true}$

Non-normal likelihoods and Gaussian approximation — 1

- How good is the approximation $L(\vec{x}; \vec{\theta} \propto exp \left[-\frac{1}{2} (\vec{\theta} \vec{\theta}_{MLE})^T H(\vec{\theta} \vec{\theta}_{ML}) \right]$?
 - Here H is the information matrix $I(\vec{\theta})$
 - True only to $\mathcal{O}(\frac{1}{N})$
 - In these conditions, $V[\vec{\theta}_{ML}]
 ightarrow rac{1}{I(\vec{\theta}_{ML})}$
 - Intervals can be derived by crossings: $\Delta lnL = lnL(\theta') lnL_{max} = k$
- Convince yourselves of how good is this approximation in case of the nuclear decay (simplified case of N measurements in which $t_i = 1$)! wget https://raw.githubusercontent.com/vischia/statex/master/nuclearDecay.R

Non-normal likelihoods and Gaussian approximation — 2

Non-normal likelihoods and Gaussian approximation — 3

The Central Limit Theorem

- The convergence of the likelihood $L(\vec{x}; \vec{\theta})$ to a gaussian is a direct consequence of the <u>central</u> limit theorem
- Take a set of measurements $\vec{x} = (x_i, ..., x_N)$ affected by experimental errors that results in uncertainties $\sigma_1, ..., \sigma_N$ (not necessarily equal among each other)
- In the limit of a large number of events, $M \to \infty$, the random variable built summing M measurements is gaussian-distributed:

$$Q := \sum_{j=1}^{M} x_j \sim N\left(\sum_{j=1}^{M} x_j, \sum_{j=1}^{M} \sigma_j^2\right), \quad \forall f(x, \vec{\theta})$$

- The demonstration runs by expanding in series the characteristic function $y_i = \frac{x_i \mu_j}{\sqrt{\sigma_i}}$
- ullet The theorem is valid for any p.d.f. $f(x, \vec{\theta})$ that is reasonably peaked around its expected value.
 - If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a large weight in the sum, and the distribution of *Q* will have non-gaussian tails
 - The consequence is an alteration of the probability of having sums Q outside of the gaussian

Asymptoticity of the Central limit theorem

- The condition $M \to \infty$ is reasonably valid if the sum is of many small contributions.
- How large does *M* need to be for the approximation to be reasonably good?

Asymptoticity of the Central limit theorem

- The condition $M \to \infty$ is reasonably valid if the sum is of many small contributions.
- How large does *M* need to be for the approximation to be reasonably good?
- Download the file and check!
 wget https://raw.githubusercontent.com/vischia/statex/master/centralllimit.py

Asymptoticity of the Central limit theorem

- The condition $M \to \infty$ is reasonably valid if the sum is of many small contributions.
- How large does *M* need to be for the approximation to be reasonably good?
- Download the file and check! wget https://raw.githubusercontent.com/vischia/statex/master/centralllimit.py
- Not much!

From sidebands to systematic uncertainties

As described, let's model our estimation problem using profile likelihoods

$$\mathcal{L}(\mathbf{n}, \boldsymbol{\alpha}^{\mathbf{0}} | \mu, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(\alpha_j^0 | \alpha_j, \delta \alpha_j)$$

$$\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\hat{\boldsymbol{\alpha}}}_{\mu})}{\mathcal{L}(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\alpha}})}$$

Sideband measurement

$$L_{SR}(s,b) = Poisson(N_{SR} \mid s+b)$$

$$L_{CR}(b) = Poisson(N_{CR} \mid \tilde{\tau} \cdot b)$$

$$\mathcal{L}_{full}(s,b) = \mathcal{P}(N_{SR} \mid s+b) \times \mathcal{P}(N_{CR} \mid \tilde{\tau} \cdot b)$$

- Subsidiary measurement of the background rate:
 - 8% systematic uncertainty on the MC rates
 - \tilde{b} : measured background rate by MC simulation
 - $\mathcal{G}(\tilde{b}|b, 0.08)$: our

$$\mathcal{L}_{full}(s,b) = \mathcal{P}(N_{SR}|s+b) \times \mathcal{G}(\tilde{b}|b, 0.08)$$

Renormalization of the subsidiary measurement

$$\mathcal{L}(\mathbf{n}, \boldsymbol{\alpha}^{\mathbf{0}} | \mu, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(\alpha_j^0 | \alpha_j, \delta \alpha_j)$$

$$\downarrow$$

$$\mathcal{L}(\mathbf{n}, 0 | \mu, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(0 | \alpha_j, 1)$$

- Subsidiary measurement often labelled constraint term
- It is not a PDF in α : $\mathcal{G}(\alpha_i|0,1) \neq \mathcal{G}(0|\alpha_i,1)$
- Response function: $\tilde{B}_i(1+0.1\alpha)$ (a unit change in α –e.g. 5% JES– changes the acceptance by 10%)

Graphics from W. Verkerke

Interpolation needed between template models

- ullet Conditional density $f(x|\alpha)$ constructed by some means for a discrete set of values $\alpha_1,...\alpha_N$
- The exact dependence of $f(x|\alpha)$ on α is unknown
 - In practice $f(x|\alpha_i)$ often nonparametric density estimates in the x space (e.g. histograms)
- Problem: determine $f(x|\alpha)$ for arbitrary α_i
 - Typically α_i within the cloud of $\alpha_1, \dots \alpha_N$, and direct calculation too expensive
 - Need to keep the densities normalized: $\int f(x|\alpha)dx = 1$, $\forall \alpha$

Horizontal or vertical morphing?

Vertical interpolation of single-parameter 1D densities:

$$f(x|\alpha) = w_1 f(x|\alpha_1) + (1 - w_1) f(x|\alpha_2),$$

$$w_1 = \frac{\alpha_2 - \alpha}{\alpha_2 - \alpha_1}, \ \alpha \in [\alpha_1, \alpha_2]$$

 Horizontal interpolation: identical parameter dependence, but interpolate quantile function

$$q(y|\alpha) = w_1 q(y|\alpha_1) + (1 - w_1) q(y|\alpha_2),$$

 $q(y|\alpha) := F^{-1}(y|\alpha)$

- Have to solve $q(y|\alpha) = x$ numerically
- Difficult to evaluate numerically around y = 0 and y = 1

- Vertical interpolation is often not what you want
 - Except some cases, e.g. interpolation of detector efficiency curves

UCLouvain Institut de recherche

Horizontal interpolation/morphing in one dimension

- For HEP application and univariate densities, reasonable solution is linear interpolation
 - A.L. Read, Linear interpolation of histograms, NIM A 425, 357 (1999)
 - Can fail dramatically if the change in shape is comparable with or smaller than MC statistical fluctuations
 - Sometimes we may want to avoid adding this new degree of freedom in the model
 - Decoupling rate and shape effects is always possible, even when not neglecting the shape ones)

Graphics from W. Verkerke

- The cases $f(\vec{x}|\alpha)$ and $f(\vec{x}|\vec{\alpha})$ remain delicate
- Multivariate parameters: $g(\cdot|\vec{\alpha}) = \sum_{i=1}^{N} w_i(\vec{\alpha}, \vec{\alpha_1}, ..., \vec{\alpha_N}) g(\cdot) \vec{\alpha_i}$
 - $g(\cdot|\vec{\alpha})$ either density function (x) or quantile function (y)
 - Non-negative weights summing up to 1; many techniques (polinomial, local poly, spline best used in 1D)
 - Lack of generality because assumes Euclidean space

What if our metric is not Euclidean?

- Given two distributions P_0 and P_1 , define an *optimal map T* transforming $X \sim P_0$ into $T(X) \sim P_1$ (Monge, 1781)
- Define a geodesic path between P₀ and P₁ in the space of the distributions, according to a
 given metric
 - Shape-preserving notion of averages of distributions
 - Distance based on transport along geodesic paths
- Let $X \sim P_0$, and find T by minimizing $\mathbb{E} \left[\parallel X T(X) \parallel^p \right] = \int \parallel x T(x) \parallel^p dP_0(x)$
 - Minimization over all T s.t. $T(X) \sim P_1$. Can replace Euclidean distance with any distance
 - The minimizer is called optimal transport map

Generalize to arbitrary metric

• Formally a minimization of the weighted average distance:

$$S(f, \vec{\alpha}, \vec{\alpha_1}, \vec{\alpha_N}) = \sum_{i=1}^{N} w_i(\vec{\alpha}, \vec{\alpha_1}, \vec{\alpha_N}) \left[D(f(x|\vec{\alpha}), f(x|\vec{\alpha_i})) \right]^p$$

- D(f(x), g(x)) is a distance (metric functional in the space of distributions)
- Every metric generates an interpolation method (see Chap. 14 of Encyclopedia of Distances, Deza and Deza, 4ed., Springer, 2016)
- L^2 distance generates vertical morphing (with p=2, $[D(\cdot)]^p$ is the integrated squared error)
- Wasserstein distance generates horizontal morphing (p=1 Earth Mover distance)

•
$$W_p(X,Y):=W_p(P_0,P_1)=\left(\int\parallel x-T^*(x)\parallel^p dP_0(x)\right)^{1/p},\,T^*$$
 optimal transport map

- Works well in defining a metric in the space of almost all distributions
- The set of distributions equipped with Wasserstein distance is a geodesic space (Riemaniann if p=2)
- Given P_0 and P_1 there is always a shortest path (geodesic) between them, and its length is the Wasserstein distance $W(P_0, P_1)$

Graphics from Bonneel, Peyre, Cuturi, 2016

Optimal transport is quite powerful

Graphics from Peyre, Cuturi, 2019

What if a transport map from P_0 to P_1 does not exist?

- Example: $P = \delta_0$ (point mass at 0), Q = Gaussian
- Kantorovich relaxation: take the mass at x and split it into small components
- \mathcal{J} set of all joint distributions J for (X,Y) with marginals P and Q (coupling between P and Q)
- Find J to minimize $\mathbb{E}_J\Big[\parallel X-Y\parallel\Big]=\Big(\int\parallel x-y\parallel^p dJ(x,y)\Big)^{\frac{1}{p}}$
- Wasserstein distance: $W(P,Q) = W(X,Y) = \left(\inf_{J} \int \parallel x-y \parallel^2 dJ(x,y)\right)^{\frac{1}{2}}$

- If an optimal transport T exists, then the optimal J is degenerate and supported on the curve (x, T(x))
- Regularization possible by adding term:

$$\mathbb{E}_{J}\left[\parallel X-Y\parallel\right]=\left(\int\parallel x-y\parallel^{p}dJ(x,y)\right)^{\frac{1}{p}}+\lambda f(J)$$

- f(J) e.g. entropy
- Fast, and easier inference
- How to choose λ ? Not clear effect of regularization

Graphics from Wikipedia

Uncertainty quantification

- These methods introduce an uncertainty in the morphed shape determination
- \hat{T} estimate of T based on samples $X_1,...,X_N \sim P_0, Y_1,...,Y_N \sim P_1$
- Closeness of \hat{T} to T ($\hat{W}(P_0, P_1)$ to $W(P_0, P_1)$ depends on number of dimensions $\mathbb{E} \int \|\hat{T}(x) T(x)\|^2 dP_0(x) \approx (\frac{1}{N})^{\frac{1}{d}}$ (curse of dimensionality)
- Getting confidence intervals very hard, solved only for special cases
 - 1D (Munck, Czado, Sommerfeld)
 - ullet MultiD: sliced Wassserstein distance (average W between 1D projections of P_0 and P_1)
 - Under this approximation (weaker metric), can derive confidence regions by a minimax game on the L^r norm of quantile functions of P₀ and P₁ for a fixed confidence level
 - Coverage guaranteed by construction

Graphics from arXiv:1909.07862. Here P_0 is P and P_1 is Q, indices refer to two example cases, n = 100

UCLouvain Institut de recherche en mathématique et physique

Moment morphing

- Moment morphing: morph standardized densities instead of densities
 - Useful for models with well-behaved first moments (mean and variance)
 - ullet Not as good as horizontal morphing in 1D (inefficient version of it), good approximation in N
 - How to morph the covariance matrix? Many choices available

The Inverse Rosenblatt Transformation

- Devise a multi-D equivalent of quantile function: the Inverse Rosenblatt transformation (Ann. Math. Statist. 23, 470 (1952).
- The inverse Rosenblatt transformation $x_1 = F_1^{-1}(z_1), x_2 = F_2^{-1}(z_2|z_1)$ uses conditional quantile functions: we know how to interpolate them!
- Computationally intensive (k non-linear equations to be solved numerically, N calls to root-finding, etc)

Let $X=(X_1,\cdots,X_k)$ be a random vector with distribution function $F(x_1,\cdots,x_k)$. Let $z=(z_1,\cdots,z_k)=Tx=T(z_1,\cdots,z_k)$, where T is the transformation considered. Then T is given by $z_1=P(X_1\leq x_1)=F_1(z_1)$, $z_2=P(X_1\leq x_2)=F_1(z_1)=F_2(z_2)$, \vdots $z_k=P(X_1\leq x_k)$ $z_{k-1}=z_{k-1},\cdots,X_1=z_1\}=F_1(z_k)$ [2. Considered for $x_1=x_1$]. One can readily show that the random vector Z=TX is uniformly distributed over the F_1 -direction of the F_2 -direction of the F_3 -direction of F_3 -dire

Graphics by Igor Volobouev

Institut de recherche

Copula morphing

- Probability integral transforms of marginals of $f(\vec{x})$: $z_1 = F_1(x_1), ... z_k = F_k(x_k)$
- ullet Copula density $c(\vec{z})$ is density of the vector of z_k , captures mutual information (and $c(\vec{z})$ uniform if and only if all X_i independent)
- Given the marginal densities $f_i(x) = \frac{dF_i(x)}{dx}$, then $f(\vec{x} = c(F_1(x_1), ..., F_k(x_k)) \prod_{i=1}^k f_i(x_i)$
- Now do horizontal morphing on the marginals separately in each variable, then interpolate vertically the copula density
- Much faster than Inverse Rosenblatt transformation
- Results intuitively more "reasonable"

Graphics by Igor Volobouev
Statistics for HEP, LIP Lisboa LHC Course 2020

111 / 122

How we tend to call things in CMS

Accounting for various effects: statistical fluctuations

Statistical uncertainty of nominal templates taken into account in Poisson based template fits to data

- 'Barlow Beeston': one additional nuisance par per contributing template
 J. Barlow, C. Beeston, CPC 77 (1993) 219-228
- 'Barlow Beeston lite': one additional nuisance parameter for templates sum →Standard Procedure in CMS
 John Conway, arXiv1103.0354

Statistical uncertainty of \pm 1sigma Templates usually neglected \rightarrow can lead to fake constraints for λ , see

indico.cern.ch/event/761804/contributions/3160985/attachments/1733339/2802398/

Slide by Olaf Behnke

Vischia

Morphing in the Higgs Combination Tool

Cubic spline interpolation + straight line extrapolation

Slide by Olaf Behnke

Horizontal smoothing

UCLouvain en mathématique et physique

- Horizontal smoothing with well-established methods in literature
- Kernel-based methods depend on choice of bandwith
 - Discussed in detail last week (Nick McColl)
- Local linear regression depends on locality window

Material @ Chad Shafer: Kernel Density Estimation (KDE)

· Sample n independent points Xi from unknown distribution f · KDE estimate: · Example: Gaussian Kernel

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

10

Slide by Olaf Behnke

Smoothing and Goodness-of-Fit tests

- To compare the smoothed and unsmoothed templates it's tempting to use χ^2
- However, χ^2 not well defined; by construction, smoothing alters number of degrees of freedom You have first to treat your smoothing method as a linear filter, and calculate NDoF (in KDE, related to autocorrelation of the kernels used)
 - Somehow related to time series analysis: reduction of NDoF
 - There is literature on this, we can put it in twiki; in the meantime, ask Igor Volobouev ©

UCL ouvain

Caveats on modelling theory uncertainties (P.V. at Benasque 2018

- Cross section uncertainty: easy, assuming a gaussian for the constraint term $\mathcal{L}_{full}(s,b) = \mathcal{P}(N_{SR}|s+b) \times \mathcal{G}(b|b,0.08)$
- Factorization scale: what distribution \mathcal{F} is meant to model the constraint??? $\mathcal{L}_{full}(s,b) = \mathcal{P}(N_{SR}|s+b(\alpha_{FS}) \times \mathcal{F}(\tilde{\alpha_{FS}}|\alpha_{FS})$
 - "Easy" case, there is a single parameter α_{ES} , clearly connected to the underlying physics model
- Hadronization/fragmentation model: run different generators, observing different results
 - Difficult! Not just one parameter, how do you model it in the likelihood?
 - 2-point systematics; you can evaluate two (three, four...) configurations, but underlying reason for difference unclear
 - Often define empirical response function

- Counting experiment: easy extend to other generators
- There must exist a value of α corresponding to SHERPA

- Shape experiment: ouch!
- SHERPA is in general not obtainable as an interpolation of PYTHIA and HERWIG

Define a constraint term

- Attempting to quantify our knowledge of the models
- There is no single parameter, difficult to model the differences within a single underlying model
- Which of these is the "correct" one?

Solving the delta functions issue: discrete profiling

- Label each shape with an integer, and use the integer as nuisance parameter
- Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance parameter values
- How do you define the various shapes?
 - Need many additional generators!
 - Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

From arXiv:1408.6865

The issue of over-constraining

Institut de recherche en mathématique et physique

- How to interpret constraints?
- Not as measurements
- Correlations in the fit make interpretation complicated
- Avoid statements when profiling as a nuisance parameter

Graphics from ATLAS and W. Verkerke, as far as I remember

Summary of the first day

- Statistics is a tool to answer questions (but you must pose questions in a well-defined way)
- Mathematical definition of probability based on set theory and on the theory of Lebesgue measure
 - Frequentist and Bayesian statistics
 - Conditioning, marginalization
 - Expected values, variance
- Random variables and probability distributions
 - Correlation vs causality
- Information and likelihood principle
 - Sufficiency, ancillarity, pivoting
- Estimators
 - Point estimates with the Maximum Likelihood Estimator (MLE)
 - Interval estimates with the MLE
 - The profile likelihood ratio and modelling of systematic uncertainties

THANKS FOR THE ATTENTION!

Backup