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From collision remnants to physics



We hunt for new physics with exciting signatures
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Discovery drives the LHC detectors concept

• Before discovery different signatures to be expected depending on the Higgs mass

• 4π-hermetic general purpose detectors are needed covering: leptons, photons, jets, …
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Proton-remnants underly the hard processes

• Single proton collisions produce high multiplicity events
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• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

Average 15-20 charged

particles per inelastic 

collision

Proton-remnants underly the hard processes
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• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

• Most particles are pions with

strong interactions preserve isospin

Proton-remnants underly the hard processes
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• Single proton collisions produce high multiplicity events

• Distributions are approximately uniform in pseudo-rapidity

• Most particles are pions with

• As 𝝿0→𝛾𝛾 dominates N(𝛾)≈N(𝝿±) in the detector

electromagnetic

energy deposits

charged particle

tracks

a muon

minimum bias

trigger 

for physics

Proton-remnants underly the hard processes



Beyond pions and photons

• Production of other particles suppressed by

• content of the proton (PDFs)

• mass (ms~19md)

• interactions

10

strange particles account for 

O(10%) of the multiplicities



What can we detect?
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• Final states

• secondary vertices from long-lived 

decays only in rare cases

• Must interact within detector volume

• electromagnetic or strong interactions

• electrons, muons, photons

• neutral or charged hadrons

• Long-lived weakly interacting particles

• indirectly detected 

• missing transverse energy

• good resolution when balancing energy

maximum information

needed to reconstruct

the hard process



Particles and their interactions

• Detectors register the passage of particle through matter

• Combine absorbers (start interactions) with sensitive materials (convert to optical/voltage)
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Main concepts behind general purpose detectors
13

Magnetic field “Fc = qvB”

• separate by charge

• measure p by curvature

Calorimetry

• measure E from deposits

• electromagnetic and hadronic

Inner tracking

• minimal interference with event

• points to measure curved tracks

• particle identification 

Outer tracking

• muons (weakly interacting)



The two general purpose detectors
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• Standalone measurement of p(μ)

• Resolution is flat in η and independent of pileup

• Two complementary p(μ) measurements

• Tracks point to primary vertex
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Particles and their interactions
15



Material distribution in general purpose detectors
16

Lightweight materials

(Si, gaseous)

High-Z materials

Dense materials (e.g. 

Iron, Copper, Brass, 

Stainless Steel, 

Uranium)

B field source

it’s a challenge to fit it all within volume

trade-off between best energy resolution and particle 

identification



6.6λI

σ/E ~74% / E1/2

3.8 T

27X0

σ/E ~3% / E1/2



Particle flow
18

>60% of the energy of 

a jet may be 

reconstructed at the 

level of the tracker



Example: a jet of 5 particles

• Reconstruction starts in the tracker (start from easy tracks, use remaining hits for 

others)

• but that does 2/3 particles in this jet

19

pT=35 GeV
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Example: a jet of 5 particles

• Coarse granularity in the hadronic calorimeter

• See local energy maxima, connect neighbours

• Determine energy sharing iteratively



• The electromagnetic calorimeter sees things in coarser detail (Δɸ,Δη~0.02)

• Use to refine entry point in calorimeter, link to tracks and balance energy

• Cluster energy unassociated to tracks: photons and neutral hadrons

21
Example: a jet of 5 particles



Particle flow algorithm is a reconstruction paradigm
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Cluster

linked to track?

Photon 

(e.m. cluster)

Neutral hadron

(had cluster)

N

Y

Etrack

compatible with 

Ecalo?

Charged pion
(track+had cluster)

Y

deficit Muon

(track)

Electron
(track+e.m. cluster)

excess

Split 

cluster 

until 

balanced
it also shapes the re-design 

of the detectors for Phase II of the 

LHC
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Particle flow algorithm is a reconstruction paradigm



Connecting the dots with tracking



Why?
25

P. Silva Tracking detectors

• Identify the vertex from the hard interaction

…but also secondary vertices from long lived particles



Why?
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• Identify the vertex from the hard interaction

…but also secondary vertices from long lived particles

• Measure particle trajectories

• momentum (p), energy loss (dE/dx), link to coarser calorimeters and muon chambers

JHEP 07 (2013) 122

arXiv:1411.4413

http://arxiv.org/abs/1305.0491
http://arxiv.org/abs/1411.4413


With what?

• Solid state detectors

• Ge, Si, Diamond,...

• pixels and strips

27
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With what?

• Gaseous detectors

• drift tubes, resistive plate chambers, cathod strip chambers, gas electron multipliers, ...

• usually for outer tracking
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P. Silva Tracking detectors



How?
• While transversing a medium a charged particle leaves an ionization trace

• create a depletion zone in between electrodes: gaseous, liquid or solid-state (semi-conductor)

• ionization charges drift towards electrodes

• amplify electric charge signal and deduce position from signals collected in individual strips

29

ionization chamber Si strip detector≈



Gaseous versus solid state

• In solid state detectors ionization energy converts in e-h pairs

• 10 times smaller with respect to gaseous-based ionization

• charge is increased → improved E resolution
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Gaseous versus solid state

• Higher density materials are used in solid state detectors

• charge collected is proportional to the thickness

• most probable value for Silicon

• excellent spatial resolution: short range for secondary electrons

31
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Inner tracking at the LHC

P. Silva Tracking detectors

CMS strips

CMS pixels

ATLAS SCT ALICE pixels

LHCb VELO

ATLAS pixels

ATLAS pixels (inner barrel layer) ALICE ITS

LHCb SciFi

2
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2
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Outer ⟷ inner tracking
33
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Coordinates for tracking

• The LHC experiments use a uniform B field along the beam line (z-axis)

• trajectory of charged particles is an helix – radius R

• use transverse (xy) and longitudinal (rz) projections

• pseudo-rapidity: transverse momentum:

• Impact parameter is defined from distance of closest approach to primary vertex

34



Resolution for the impact parameter

• Depends on radii+space point precisions

• For two layers we expect

• Improve with small r
1
, large r

2

• Improves with better σ
i
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Resolution for the impact parameter

• Depends on radii+space point precisions

• For two layers we expect

• Improve with small r
1
, large r

2

• Improves with better σ
i

• Precision is degraded by multiple scattering

• Gaussian approximation is valid

• Width given by

• extra degradation term for d
0
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Resolution for the impact parameter

• For a track with θ≠900 we can write r → r/sinθ and x → x/sinθ

• By substitution in the formulas of the previous slide we have:

• Typical resolution expected/measured

• 100 μm @ 1 GeV        20 μm @ 20 GeV

• Typical lifetimes (rest frame)

• B ~ 500μm    D0 ~120μm     𝝉 ~ 87 μm

37

geometry-dependent Material- and p
T
-dependent



Momentum measurement

• Circular motion under uniform B-field

• Typically measure the sagitta

• deviation to straight line relates to R by

• Uncertainty in pT measurement improves with B, number of hits and path

• Multiple scattering introduces, again extra degradation
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𝑝𝑇[GeV] = 0.3 × 𝑞 × 𝐵[T] × 𝑅[m]



Momentum resolution
39
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Si-based detectors



Usage of Si-based trackers for HEP

• Kemmer, 1979 transferred Si-technology for electrons to detector - NIM 169(1980)499

• NA11/32 spectrometer at CERN →

• 6 planes Si-Strip, <2k channels

• Resolution ~4.5μm

• SLD vertex detector at SLAC →

• 120-307 M pixels: 0.4%X0

• Resolution <4μm,  d0~11-9μm

• ALEPH detector at LEP →

• Enable precise measurements for B-physics (lifetime, b-tagging)

41
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Ionization energy loss in the Si

Most probable value of the Landau distribution for energy loss defines the minimum ionizing particle

42



Si properties

• Widely used in high energy physics and industry

• Low ionization energy

• Band gap is 1.12 eV

• Takes 3.6 eV to ionize atom → remaining yields 

phonon excitations

• Long free mean path → good charge collection 

efficiency

• High mobility → fast charge collection

• Low Z → reduced multiple scattering

• Good electrical properties (SiO
2
)

• Good mechanical properties

• Easily patterned to small dimensions

• Can be operated at room temperature

• Crystalline → resilient against radiation

43

P. Silva Tracking detectors



Bond model of semi-conductors

• Covalent bonds formed after sharing electrons in the outermost shell

• Thermal vibrations

• break bonds and yield electron conduction (free e-)

• remaining open bonds attract free e- → holes change position → hole conduction
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Energy bands structure compared

• In solids, the quantized energy levels merge

• Metals: conduction and valence band overlap

• Insulators and semi-conductors: conduction and valence band separated by energy (band) gap

• If μ (band gap) sufficiently low : electrons fill conduction band according to Fermi-Dirac statistics
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Intrinsic carrier concentration

• Energy state occupation probability follows Fermi statistics distribution

• Typical behaviour @ room temperature

• excited electrons move to conduction band

• electrons recombine with holes

• Excitation and recombination in thermal equilibrium

• Intrinsic carrier concentration given by

with A=3.1x1016 K-3/2cm-3 and E
g
/2k

B
=7x103K

46

ni~1.45x1010 cm-3

⇒1/1012 Si atoms is ionized



Energy loss in the Si: the Landau PDF
47
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Example: Si detector with thickness d=300μm

MIP as function of the energy: Bethe-Bloch curve



Intrinsic S/N in a Si detector

For a 300μm thickness sensor

• Minimum ionizing particle (MIP) creates:

• Intrinsic charge carriers (recall slide 43):

Number of thermally-created e-h pairs exceeds mip signal by factor 10!

49



Si doping: n-dope bond model

• Doping with a group 5 atom (e.g. P, As, Sb)

• atom is an electron donor/donator

• Weakly bound 5th valence electron

• Positive ion is left after conduction electron is released

50

P. Silva Tracking detectors



Si doping: n-dope bond model II

• Energy level of donor is below edge of conduction band

• Most electrons enter conduction band at room temperature

• Fermi level moves up with respect to pure Si

51
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Si doping: p-dope bond model

• Doping with a group 3 atom (e.g. B, Al, Ga, In)

• atom is an electron acceptor

• open bond attracts electrons from neighbouring atoms

• acceptor atom in the lattice becomes negatively charged

52

P. Silva Tracking detectors



Si doping: p-dope bond model - II

• Energy level of acceptor is above edge of conduction band

• Most levels are occupied by electrons → holes in the valence band

• Fermi level moves down with respect to pure Si

53
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p-n junctions

• Difference in Fermi levels at the interface of n-type or p-type

• diffusion of excess of charge carriers until thermal equilibrium (or equal Fermi level)

• remaining ions create a depletion zone: electric field prevents further the diffusion

54
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p-n junctions
55
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Biasing p-n junctions

Forward-biased junction

• Anode to p, cathode to n

• Depletion zone becomes narrower

• Smaller potential barrier facilitates diffusion

• Current across the junction tends to increase

56

Reverse-biased junction

• Anode to n, cathode to p

• e,h pulled out of the depletion zone

• Potential barrier is suppressed

• Only leakage current across junction



Depletion zone width and capacitance

• Characterize depletion zone from Poisson equation with charge conservation:

• Typically: Na=1015 cm-3 (p+ region) >> Nd=1012cm-3 (n bulk)

• Width of depletion zone (n bulk):

• Device is similar to a parallel-plate capacitor

• Depletion voltage saturates the capacitance

• Typical curve obtained for CMS strip detector
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Leakage current

• Thermal excitation generates eh pairs

• Reverse bias applied separates pairs

• eh pairs do not recombine and drift

⇒ leakage current

58

• Depends on purity, defects and 

temperature

⇒ usually require detector cooling 

for stable operation (-30o-10oC)



Charge collection

• eh pairs move under the electric field

• larger biases smaller collection times

• typically smaller than LHC bunch 
crossing

59

Simulation by Thomas Eichhorn (KIT)

1 2 3 4 5

charge collection simulation for a 450 incident particle



Position resolution (DC coupled)

• Segmentation of the implants determines precision in position reconstruction

• Typical configuration

• p implants in strips

• n-doped substract ~300μm (2-10kΩcm)

• depletion voltage <200 V

• backside P implant establishes ohmic contact and prevents early breakdown

• Al metallisation

• Field is closest to the collecting electrodes (where most of the signal is)
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Position resolution (AC coupled)

• AC coupling blocks leakage current from 
amplifier

• Deposit SiO2 between p+ and Al strip

• Capacitance ~32 pF/cm

• Shorts through pinholes may be reduced with a 
second layer of Si3N4

• Use large poly silicon resistor (R>1MΩ) 
connecting the bias voltages to the strips

61



CMS module
62



Pixel sensors

• High track density better resolved with 2D position information

• back-to-back strips for 2D position information → yields “ghost” hits

• Hybrid pixel detectors with sensors and bump-bonded readout chips

63

P. Silva Tracking detectors

one sensor, 16 front-end chips and 1 master controller chip
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Performance: S/N

• Signal depends on the thickness of the depletion zone and on dE/dx of the particle

• Noise suffers contributions from:

• Optimizing S/N

• N
ADC

>thr,  given high granularity most channels are empty

• decrease noise terms (see above)

• minimize diffusion of charge cloud after thermal motion ►

• (typically ~8μm for 300μm drift)

• radiation damage severely affects S/N (next slide)
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capacitance leakag

e 

current

parallel 

resistor

series 

resistor

CMS strips



Influence of radiation
• Si is not fully robust against radiation 

• induced defects result in noise, inefficiency, leakage,…

• need to increase depletion voltage at higher fluences

• expected hit finding efficiency after 10 years of LHC operation: 95%
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CMS tracker

• Pixel detector: ~1m2 area

• 1.4k modules  ⇒ 66M pixels

• Strips: ~200m2 area

• 24k single sensors, 15k modules

• 9.6M strips = electronics 
channels

• 75k readout chips

67



CMS tracker budget

• In some regions can attain 1.8X0

• often photons will convert, electrons will radiate  :(

• use for alignment and material budget estimation :)

• Precise knowledge is crucial, e.g. for Higgs with γ and electrons in the 
final state

68

P. Silva Tracking detectors



X-ray of the CMS tracker

• Use photon conversions (γ → e+e-
)

• probability of interaction depends on the transversed material (1-e
-x/X0

)

• 54% of the H → γγ events have are expected to have at least one conversion

69
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Calorimetry for pedestrians



Recall: we measure what collapses in the detector
72

• Particles need to interact in matter ⇒ destructive interaction

• dE/dx is converted in a signal

• collect: charge, light, heat

hadron

e/𝛾

ionization

Cerenkov radiation

scintillation



Purpose of a calorimeter

• Primarily they measure the total energy of a particle, but they are versatile

• can measure position, angle and timing

• infer energy of neutrinos after energy balance

• General properties

• length of showers induced in calorimeters increase logarithmically with E

• energy resolution improves with E

• fast signals, easy to reconstruct (unlike tracking) ⇒ trigger

• Almost impossible to do high energy physics without calorimeters

73



A very brief historical overview

• Nuclear Physics in the 50’s usage of semi-conductor 

devices improving the energy measurement of 

radiation energy

• Cosmic Rays (1958) - the first sampling calorimeter

• Particle Physics: adoption of electromagnetic and 

some times hadronic calorimeters as crucial 

components in experiments

• Uranium/compensation (1975) - uniformize

response to e/𝛾 and hadrons to improve 

resolution

• 4𝝿 calorimeters

• High precision calorimetry with crystals, 

liquid Argon, scintillating fibers

• Particle flow calorimeters for HL-LHC, CLIC/ILC

(weighing more on reconstruction than hardware…)
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4𝝿 UA2 1983

PbWO4



ATLAS calorimetry system
75



CMS calorimetry system
76



Calorimetry in LHCb
77

Plastic+metal sandwiches



Calorimetry in ALICE
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PHOS

PbWO4 crystals

EMCAL

Lead+Scintillator



Electromagnetic calorimeters

• e/𝛾 loose energy interacting with nuclei and atomic electrons

• ionization

• bremmstrahlung

• photoelectric effect

• Compton scattering

• pair production

• e.m. showers will evolve very similarly independently on how they start

• subsequent e or 𝛾 will branch according to these interactions

79

e 

𝛾



Processes initiated by electrons

Radiation length (X0): 

quantifies by how much 

the energy flux is reduced 

by 1/e

80

Critical energy (Ec): 

ionization and radiation 

are at the same level

7 MeV for Lead

0.56cm for Lead



Processes initiated by photons

• Photo-electric effect

• Compton scattering

• Pair production

81

probability to 

convert

after 1X0 is e-7/9



Electromagnetic showers

• High energy e/𝛾 will start a cascade of pair production and bremmstrahlung

• multiplicative regime until secondaries start falling below Ec

82

e- in bubble chamber (70% Ne: 30% H2) under 3T field



Electromagnetic showers

• High energy e/𝛾 will start a cascade of pair production and bremmstrahlung

• multiplicative regime until secondaries start falling below Ec

83

showers from two 

different

energy photons in 

bubble chambers



A toy model for electromagnetic showers

• Start with a pair conversion followed by radiation,…  E → E/2 → E/4 → …

• Scaling properties

• Splitting energy reaches EC limit, shower starts to be absorbed 

84

not so far from reality



Detailed simulation of an electromagnetic shower
85



Spread in the transverse plane

• Particles disperse with respect to initial axis

• decay openings

• multiple scattering of charged particles

• 𝛾 in the region of minimal absorption travelling longer

• Define the Moliere radius as 

lateral size containing 90% of the shower energy
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CMS-TDR-15-02

https://cds.cern.ch/record/2020886/files/LHCC-P-008.pdf


Electromagnetic energy resolutions

Stochastic term -

fluctuations in the shower 

development, energy 

deposited. Enhanced if 

sampling is made, if 

Cerenkov radiation starts 

later, etc.

87

Noise term - additional 

degradation at low energy 

due to electronics noise, 

pileup, etc.

Constant term - energy 

leakage, calibration, non 

uniformity, radiation 

damage, …

a
c

b



Some challenges in maintaining energy resolution

• Intercalibration between cells needs to attain 1% level or better

• use η/𝝿0→𝛾𝛾 , Z→ee and ɸ symmetry in minimum bias

• Track radiation damage / recovery of the crystals with a laser 

• inject light into crystals and normalize to PN diodes
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A comparison of different e.m. calorimeters
89



Hadronic showers



What is an hadronic shower?

• Charged pions, kaons, protons, neutrons, etc…

• Products of strong interactions will start “mixed” 

showers

• Requires longer containment than e.m showers
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e.m.
50%

hadronic 
(visible)

25%

invisible
25%



𝝿+/-

n

𝛾

e

s

p/n

Particle spectra in a proton shower

Based on simulation. The integral of each curve 

gives the relative fluence of each particle.
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Showers depend heavily on

the incident particle…



Particle spectra in a proton shower

Based on simulation.

93

Showers depend heavily on

the incident particle and its energy…

e.m.

nuclear photons

hadronic cascade



Particle spectra in a proton shower
94

Showers depend heavily on

the incident particle and its energy…

…and fluctuations are non-gaussian!



Hadronic showers are unique

• There are never two alike and need to be analyzed case-by-case

• hardware compensation: enhance the nuclear energy through materials

• high granularity calorimeter: enable feature extraction and cluster-by-cluster calibration

• dual-readout: measure the e.m. energy fraction 

• particle flow:  calorimeter identifies particle type, energy used only if no track
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e.m. (hadronic) component is shown in red (blue)



Containment of an hadronic shower

• The interaction length quantifies the mean distance before undergoing a nuclear interaction

• Interaction length (λ) is significantly larger than the radiation length (X0)

96

e.m. shower hadronic shower



Characteristics of different materials
97



Energy reconstruction I
• Need to gather energy spread in time: integrate pulse shape by weighting / fitting

• calorimeters often need more time to integrate signals with respect to tracking devices

• hadron showers: slow neutron component can appear significantly delayed in time (>100ns)
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NIM A 606 (2009) 362–394

CMS DPS 2015-016 

…and then there is pileup

https://ac.els-cdn.com/S016890020900792X/1-s2.0-S016890020900792X-main.pdf?_tid=fe42d735-4980-4745-86ad-60407b7b87db&acdnat=1521111879_8b6b6f6f516f3210f8569b86230b4847
https://twiki.cern.ch/twiki/bin/view/CMSPublic/EcalDPGResultsCMSDPS2015016


Energy reconstruction II
• Need to gather energy spread in space : clustering algorithms are needed

• algorithm needs to be adapted to the particle, segmentation, material upfront, shower components

• often several iterations needed, depending on how busy an event is
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typical PF algorithms (implemented in Pandora)

http://www.hep.phy.cam.ac.uk/linearcollider/pandora/


Resolutions and response - ATLAS TileCal

• Typically hadronic calorimeters exhibit 

• non-linearity, different response to e/𝛾 and hadrons 

(compensation)

• significantly poorer resolutions compared to e.m. calorimeters
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￭ data

▢ simulation

NIM A 606 (2009) 362–394

~1.3~1-0.11log(Ebeam)

https://ac.els-cdn.com/S016890020900792X/1-s2.0-S016890020900792X-main.pdf?_tid=fe42d735-4980-4745-86ad-60407b7b87db&acdnat=1521111879_8b6b6f6f516f3210f8569b86230b4847


Resolutions and response - CMS HCAL

• Performance is mainly driven by materials used, segmentation, depth

• but also material upfront and readout 

• partially compensated by reconstruction (next slide)
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~1.4

Eur. Phys. J. C (2009) 60: 359–373
Brass

Scintillator

https://link.springer.com/content/pdf/10.1140/epjc/s10052-009-0959-5.pdf
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Particle flow algorithm is a reconstruction paradigm



Compensating resolution performance with particle flow

• Particle flow optimizes the usage of the detector

• most energy energy ends-up being estimated by tracks and the electromagnetic 

calorimeter

• recover linearity and significantly improve in energy resolution
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Possible directions in calorimetry: high granularity
104

CMS HGCAL

• 52 Si sensor layers interleaved with Pb, Cu, stainless steel

• small cell sizes (~0.5cm2) to cope with 200 pileup and allow feature extraction

• timing capabilities (~30-50ps) per cell to allow association to primary vertex



105

• Sampling limits energy resolution…

… but can we see deposits in layers as images 

⇒ machine-learned PFlow?

CMS HGCAL

Possible directions in calorimetry: high granularity



Getting data on tape: trigger systems



107
Recall: the proton-proton cross section
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Why do we trigger?



How do we trigger?
109



Readout+decisions=dead-time
110



Solution: de-randomize with a buffer
111



Trigger system architecture for bunched collisions
112
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Trigger system architecture for bunched collisions



Be fast = keep it to the point, details come later
114



Tracking at L1 (muon case)
115



Combining information from different sub-detectors
116



Overall L1 trigger latency
117



Event building
118



High level trigger
119



Trigger/DAQ performance in LHC experiments
120



Wrap-up
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Summary I

• Hunting for new physics: wide variety of final states vs underlying event/pileup

• general purpose detectors attempt to cover all possible signatures, rejecting background

• choice of technology: trade-off between particle identification, resolution and budget

• Particle flow as a paradigm

• use the best out of the detectors for optimal performance

• yields a close 1:1 physics reconstruction of the hard process final state

• Magnetic field and tracking play a crucial role and set the base

• B field is at the heart of the experiment

• tracking detectors are at the base of the reconstruction
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Summary II

• Calorimeters  make the particles collapse to measure its energy, direction time

• electromagnetic interactions have scaling properties, easy to reconstruct

• hadronic interactions depend on energy, particle, have distinct properties

• best performance conjugates careful/clever detector design and reconstruction

• calorimeters provide most input to the trigger: coarse, fast information

• Trigger systems take decisions based on a preview of (parts of) the event

• layered structure to allow to store  ~1-1.5MB events at a rate of 300-200 Hz

• first layers usually implemented in hardware, last layer in CPU farms
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Backup
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The magnet is the heart of an experiment I

• Goal: measure 1 TeV muons with ẟpT/pT=10% without charge error

• this implies ~50μm uncertainty in measuring s

• either use “continuous tracking” or “extreme field”

• From Ampere’s theorem: 

⇒ n= 2168 (120) turns per coil in CMS (ATLAS)

• special design needed for superconducting cable in CMS

• size limited by magnetic pressure (P≈6.4 MPa)
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The magnet is the heart of an experiment II
127

ATLAS CMS

B 0.6T (8 coils, 2x2x30 turns) 4T (1 coil,  2168 turns/m)

Challenges

• spatial/alignment precision over large 

surface

• 1.5GJ  energy stored

• design and winding of the cable 

• 2.7GJ energy stored

Drawbacks

• limited pointing capabilities 

• non-trivial B

• additional solenoid (2T) needed for tracking

• space needed

• limits space available for calorimetry

• no photomultipliers for calorimeters

• multiple scattering in iron core

• poor bending at large angles



Radiation levels: a challenge for detectors and electronics

• Activation of materials, impurities, loss of transparency/response, spurious hits 

…

• additional shielding/moderators needed to limit radiation impact in the detectors
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http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003/pdf


Position resolution

• Affected by different factors

• transverse drift of electrons to track

• strip pitch to diffusion width relationship

• statistical fluctuations on energy 
deposition
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