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Practicalities

Schedule: two lessons
Monday 16.03, 17h
Tuesday 17.03, 17h (this lesson)

The slides contain links to a few exercises and examples
In a longer course there is time to go through them, not in two lessons
You are encouraged to play with the exercises offline

Many interesting references
Papers mostly in each slide
Some cool books after the summary slide of the second lesson

Unless stated otherwise, figures belong to P. Vischia, *****
(textbook to be published by Springer in 2021)

Your feedback is crucial for improving these lectures!
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Summary of yesterday
Theoretical definitions of probability (Kolmogorov, Cox) mostly equivalent
Practical realizations highlight philosophical differences

Frequentist definition: probability is a property of sets of data
Bayesian definition: hypotheses and parameters are associated a probability

Point estimate and interval estimates using the likelihood
Statisticians: estimate. Physicists: measurement
Parameterize your observable, e.g. w.r.t. reference value (µ = σ/σSM ), and nuisance parameters ~θ

Find a function of µ-only by building likelihood ratio λ(µ) =
L(µ, ˆ̂θ(µ))

L(µ̂,θ̂)

Profiling ˆ̂
θ(µ) conditional MLEs of the nuisances for each scanned value of µ

Can even “freeze” them one by one to extract their contribution to the total uncertainty
Interval estimate from crossing of the log-likelihood with predetermined values corresponding
to Gaussian “sigmas”

Log-likehood approximated to gaussian up to O(1/N), therefore probability content slightly larger
than the gaussian σ (overcoverage)

Plots from James, 2nd ed.
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Combination of measurements

Measure N times the same quantity: values xi and uncertainties σi. MLE and variance are:

x̂ML =

∑N
i=1

xi
σ2

i∑N
i=1

1
σ2

i

1
σ̂2

x
=

N∑
i=1

1
σ2

i

The MLE is obtained when each measurement is weighted by its own variance
This is because the variance is essentially an estimate of how much information lies in each
measurement

This works if the p.d.f. is known
Compare this method with an alternative one that does not assume knowledge of the p.d.f.
The second method will be the only one applicable to cases in which the p.d.f. is unknown
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Combination of measurements: alternative method 1/

Take a set of measures sampled from an unknown p.d.f. f (~x, ~θ)

Compute the expected value and variance of a combination of such measurements described
by a function g(~x).

The expected value and variance of xi are elementary:

µ = E[x]Vij = E[xixj]− µiµj

If we want to extract the p.d.f. of g(~x), we would normally use the jacobian of the
transformation of f to g, but in this case we assumed f (~x) is unknown.
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Combination of measurements: alternative method 2/

We don’t know f , but we can still write an expansion in series for it:

g(~x) ' g(~µ) +
N∑

i=1

( ∂g
∂xi

)∣∣∣
x=µ

(xi − µi)

We can compute the expected value and variance of g by using the expansion:

E
[
g(~x)

]
' g(µ), (E[xi − µi] = 0)

σ2
g =

N∑
ij=1

[ ∂g
∂xi

∂g
∂xj

]∣∣∣
~x=~µ

Vij

The variances are propagated to g by means of their jacobian!

For a sum of measurements, y = g(~x) = x1 + x2, the variance of y is σ2
y = σ2

1 + σ2
2 + 2V12,

which is reduced to the sum of squares for independent measurements
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Combination of measurements: example 1/

Let’s compare the two ways of combining measurements, and check the role of the Fisher
Information
Let’s estimate the time taken for a laser light pulse to go from the Earth to the Moon and back
(in units of Earth-to-Moon-Time EMT)

On the Moon we have a receiver built by NASA. It’s very good but placed in unfavourable conditions,
yielding only a 2% precision on Earth-to-Moon
On Earth we have a receiver made out of scrap material. It is however placed in favourable
conditions, yielding a 5% precisionon Moon-to-Earth

NEM = 0.99± 0.02 EMT

NME = 1.05± 0.05 EMT

Evidently, the time to moon and back is NEME = NEM + NME, and we can apply Eq. 7: Do it!

Resulting estimate:
NEME = 0.99 + 1.05±

√
0.022 + 0.052 EMT = 2.05± 0.05 EMT, corresponding to a precision of

σNEME
NEME

∼ 2.4%.
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Combination of measurements: example 2/

We now however can argue that over the time it takes for light to go to the Moon and back any
environment condition would be roughly constant

How can we exploit this additional information?

We can use this additional information to note that the two estimates NEM and NME are
independent estimates of the same physical quantity NEME

2

Compute NEME and σ(NEME)based on this reasonment

We can therefore use Eq. 5 to compute NEME
2 and multiply the result by 2, obtaining

NEME = 2.00± 0.03 EMT

This estimate corresponds to a precision of only 1.5%!!!

The dramatic improvement in the precision of the measurement, from 2.4% to 1.5%, is a
direct consequence of having used additional information under the form of a relationship
(constraint) between the two available measurements.
A good physicist exploits as many constraints as possible in order to improve the precision of
a measurement

Sometimes the contraints are arbitrary or correspond to special cases
Is is very important to explicitly mention any constraint used to derive a measurement, when quoting
the result.
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What about asymmetric uncertainties?

Now suppose my receivers operate by taking data and performing a maximum likelihood fit to
estimate NEM and NME

Can I combine these two measurements with the two methods seen above?
NEM = 0.99± 0.03
NME = 1.10+0.05

−0.01

For example, NEMT = 2.09+0.06
−0.03

No!

Why?
The naïve quadrature of the two uncertainties is wrong!

The naïve combination is an expression of the Central Limit Theorem
The resulting combination is expected to be more symmetric than the measurements it originates
from
Symmetric uncertainties usually assume a Gaussian approximation of the likelihood
Asymmetric uncertainties? One would need a study of the non-linearity (large biases might be
introduced if ignoring this)

Intrinsic difference between averaging and most probable value
Averaging results in average value and variance that propagate linearly
Taking the mode (essentially what MLE does) does not add up linearly!

With asymmetric uncertainties from MLE fits, always combine the likelihoods (better in an
individual simultaneous fit)
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Confidence Intervals in nontrivial cases
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Confidence intervals!

Confidence interval for θ with probability content β
The range θa < θ < θb containing the true value θ0 with probability β
The physicists sometimes improperly say the uncertainty on the parameter θ

Given a p.d.f., the probability content is β = P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX

If θ is unknown (as is usually the case), use auxiliary variable Z = Z(X, θ) with p.d.f. g(Z)
independent of θ
If Z can be found, then the problem is to estimate interval P(θa ≤ θ0 ≤ θb) = β

Confidence interval
A method yielding an interval satisfying this property has coverage

Example: if f (X|θ) = N(µ, σ2) with unknown
µ, σ, choose Z = X−µ

σ

Find [c, d] in
β = P(c ≤ Z ≤ d) = Φ(d)− Φ(c) by finding
[Zα, Zα+β ]

Infinite interval choices: here central interval
α = 1−β

2

Plot from James, 2nd ed.

Vischia Statistics for HEP March 16th and 18th, 2020 12 / 99



Confidence intervals in many dimensions

Generalization to multidimensional θ is immediate
Probability statement concerns the whole θ, not the individual θi

Shape of the ellipsoid governed by the correlation coefficient (or the mutual information)
between the parameters
Arbitrariety in the choice of the interval is still present

Plot from James, 2nd ed.
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Confidence belts: the Neyman construction

Unique solutions to finding confidence intervals are infinite
Central intervals, lower limits, upper limits, etc

Let’s suppose we have chosen a way

Build horizontally: for each (hypothetical) value of θ, determine t1(θ), t2(θ) such that∫
t 1t2P(t|θ)dt = β

Read vertically: from the observed value t0, determine [θL, θU ] by intersection
The resulting interval might be disconnected in severely non-linear cases

Probability content statements to be seen in a frequentist way
Repeating many times the experiment, the fraction of [θL, θ

U ] containing θ0 is β

Plot from James, 2nd ed.
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Coverage

Coverage probability of a method for calculating a confidence interval [θ1, θ2]:
P(θ1 ≤ θtrue ≤ θ2)

Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers
the true value of the parameter
Can sample with toys to study coverage

Coverage is not a property of a specific confidence interval!

The nominal coverage is the value of confidence level you have built your method around
(often 0.95)
When actually derive a set of intervals, the fraction of them that contain θtrue ideally would be
equal to the nominal coverage

You can build toy experiments in each of whose you sample N times for a known value of θtrue
You calculate the interval for each toy experiment
You count how many times the interval contains the true value

Nominal coverage (CL) and the actual coverage (Co) observed with toys should agree
If all the assumptions you used in computing the intervals are valid
If they don’t agree, it might be that Co < CL (undercoverage) or Co > CL (overcoverage)
It’s OK to strive to be conservative, but one might be unnecessarily lowering the precision of the
measurement
When Co! = CL you usually want at least a convergence to equality in some limit
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Coverage: the binomial case

For discrete distributions, the discreteness induces steps in the probability content of the
interval

Continuous case: P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX = β

Discrete case: P(a ≤ X ≤ b) =
∑b

a f (X|θ)dX ≤ β

Binomial: find interval (rlow, rhigh) such that
∑r=rhigh

r=rlow

( r
N

)
pr(1− p)N−r ≤ 1− α

Also,
( r

N

)
computationally taxing for large r and N

Approximations are found in order to deal with the problem

Gaussian approximation: p± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0
( r

N

)
pn(1− plow)N−n ≤ α/2∑N

r=0
( r

N

)
pr(1− phigh)N−r ≤ α/2

Single-tailed→ use α/2 instead of α
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Coverage: the binomial case

Gaussian approximation: p± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0
( r

N

)
pn(1− plow)N−n ≤ α/2∑N

r=0
( r

N

)
pr(1− phigh)N−r ≤ α/2

Single-tailed→ use α/2 instead of α

Study coverage of intervals from a gaussian approximation and from the Clopper-Pearson
method
wget https://raw.githubusercontent.com/vischia/statex/master/coverageTest.R
wget https://raw.githubusercontent.com/vischia/statex/master/coverageTest.py
wget https://raw.githubusercontent.com/vischia/statex/master/coverageTest.ipynb

For a given N, calculate intervals for various numbers of successes r, and plot the intervals of p as a
function of r
Do a coverage test by using the procedure outlined in the previous slide
Draw the coverage probability as a function of p
Find the issue with the Clopper Pearson implementation in python
What happens for different sample sizes N?
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Coverage, N = 20
Gaussian approximation bad for small sample sizes
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Coverage, N = 1000
Gaussian approximation bad near p = 0 and p = 1 even for large sample sizes
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Upper limits for non-negative parameters
Gaussian measurement ( variance 1) of a non-negative parameter µ ∼ 0 (physical bound)
Individual prescriptions are self-consistent

90% central limit (solid lines)
90% upper limit (single dashed line)

Other choices are problematic (flip-flopping): never choose after seeing the data!
“quote upper limit if xobs is less than 3σ from zero, and central limit above” (shaded)
Coverage not guaranteed anymore (see e.g. µ = 2.5)

Unphysical values and empty intervals: choose 90% central interval, measure xobs = −2.0
Don’t extrapolate to an unphysical interval for the true value of µ!
The interval is simply empty, i.e. does not contain any allowed value of µ
The method still has coverage (90% of other hypothetical intervals would cover the true value)

Plot from James, 2nd ed.
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Unphysical values: Feldman-Cousins

The Neyman construction results in guaranteed coverage, but choice still free on how to fill
probability content

Different ordering principles are possible (e.g. central/upper/lower limits)

Unified approach for determining interval for µ = µ0: the likelihood ratio ordering principle

Include in order by largest `(x) =
P(x|µ0)
P(x|µ̂)

µ̂ value of µ which maximizes P(x|µ) within the physical region
µ̂ remains equal to zero for µ < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type II error (likelihood
ratio for simple test is the most
powerful test)

Solves the problem of empty
intervals

Avoids flip-flopping in choosing an
ordering prescription

Plot from James, 2nd ed.
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Feldman-Cousins in HEP
The most typical HEP application of F-C is confidence belts for the mean of a Poisson
distribution
Discreteness of the problem affects coverage
When performing the Neyman construction, will add discrete elements of probability
The exact probability content won’t be achieved, must accept overcoverage∫ x2

x1

f (x|θ)dx = β →
U∑

i=L

P(xi|θ) ≥ β

Overcoverage larger for small values of µ (but less than other methods)

Plot from James, 2nd ed.
Vischia Statistics for HEP March 16th and 18th, 2020 22 / 99



Bayesian intervals

Often numerically identical to frequentist confidence intervals
Particularly in the large sample limit

Interpretation is different: credible intervals

Posterior density summarizes the complete knowledge about θ

π(θ|X) =

∏N
i=1 f (Xi, θ)π(θ)∫ ∏N
i=1 f (Xi, θ)π(θ)dθ

An interval [θL, θU ] with content β defined by
∫ θU

θL
π(θ|X)dθ = β

Bayesian statement! P(θL < θ < θU) = β

Again, non unique

Issues with empty intervals don’t arise, though, because the prior takes care of defining the
physical region in a natural way!

But this implies that central intervals cannot be seamlessly converted into upper limits
Need the notion of shortest interval
Issue of the metric (present in frequentist statistic) solved because here the preferred metric is
defined by the prior
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What is an hypothesis...

Is our hypothesis compatible with the experimental data? By how much?
Hypothesis: a complete rule that defines probabilities for data.

An hypothesis is simple if it is completely specified (or if each of its parameters is fixed to a single
value)
An hypothesis is complex if it consists in fact in a family of hypotheses parameterized by one or more
parameters

“Classical” hypothesis testing is based on frequentist statistics
An hypothesis—as we do for a parameter ~θtrue—is either true or false. We might improperly say that
P(H) can only be either 0 or 1
The concept of probability is defined only for a set of data~x

We take into account probabilities for data, P(~x|H)

For a fixed hypotesis, often we write P(~x; H), skipping over the fact that it is a conditional probability
The size of the vector~x can be large or just 1, and the data can be either continuos or discrete.

Vischia Statistics for HEP March 16th and 18th, 2020 24 / 99



...and how do we test it?

The hypothesis can depend on a parameter
Technically, it consists in a family of hypotheses scanned by the parameter
We use the parameter as a proxy for the hypothesis, P(~x; θ) := P(~x; H(θ).

We are working in frequentist statistics, so there is no P(H) enabling conversion from P(~x|θ)
to P(θ|~x).
Statistical test

A statistical test is a proposition concerning the compatibility of H with the available data.
A binary test has only two possible outcomes: either accept or reject the hypothesis
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Testing an hypothesis H0...
H0 is normally the hypothesis that we assume true in absence of further evidence
Let X be a function of the observations (called “test statistic”)
Let W be the space of all possible values of X, and divide it into

A critical region w: observations X falling into w are regarded as suggesting that H0 is NOT true
A region of acceptance W − w

The size of the critical region is adjusted to obtain a desired level of significance α
Also called size of the test
P(X ∈ w|H0) = α
α is the (hopefully small) probability of rejecting H0 when H0 is actually true

OnceW is defined, given an observed value~xobs in the space of data, we define the test by
saying that we reject the hypothesis H0 if~xobs ∈ W.
If~xobs is inside the critical region, then H0 is rejected; in the other case, H0 is accepted

In this context, accepting H0 does not mean demonstrating its truth, but simply not rejecting it
Choosing a small α is equivalent to giving a priori preference to H0!!!
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...while introducing some spice in it
The definition ofW depends only on its area α, without any other condition

Any other area of area α can be defined as critical region, independently on how it is placed with
respect to~xobs
In particular, for an infinite number of choices ofW , the point~xobs—which beforehand was situated
outside ofW—is now included inside the critical region
In this condition, the result of the test switches from accept H0 to reject H0

To remove or at least reduce this arbitrariness in the choice ofW, we introduce the alternative
hypothesis, H1
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Choose reasonable regions

Choose a critical region so that P(~x ∈ W|H0) is α under H0, and as large as possible under H1

Choice of regions is somehow arbitrary, and many choices are not more justified than others
In Physics, after ruling out an hypothesis we aim at substituting it with one which explains
better the data

Often H1 becomes the new H0, e.g. from (H0:noHiggs, H1 =Higgs) to (H1:Higgs ,
H1:otherNewPhysics)
We can use our expectations about reasonable alternative hypotheses to design our test to exlude H0
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A small example

H0: pp→ pp elastic scattering

H1: pp→ ppπ0

Compute the missing mass M (as
total rest energy of unseen
particles)

Under H0, M = 0

Under H1, M = 135 MeV

Choose H0 Choose H1
H0 is true 1− α α (Type I error)
H1 is true β (Type II error) 1− β (power)

Plot from James, 2nd ed.
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A longer example

Student’s t distribution

Test the mean!

wget hyptest.ipynb
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Basic hypothesis testing – 4
The usefulness of the test depends on how well it discriminates against the alternative
hypothesis
The measure of usefulness is the power of the test

P(X ∈ w|H1) = 1− β
Power (1− β) is the probabiliity of X falling into the critical region if H1 is true
P(X ∈ W − w|H1) = β
β is the probability that X will fall into the acceptance region if H1 is true

NOTE: some authors use β where we use 1− β. Pay attention, and live with it.
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Comparing tests

For parametric (families of) hypotheses, the power depends on the parameter
H0 : θ = θ0
H1 : θ = θ1
Power: p(θ1) = 1− β

Generalize for all possible alternative hypotheses: p(θ) = 1− β(θ)
For the null, p(θ0) = 1− β(θ0) = α

Plot from James, 2nd ed.
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Properties of tests
More powerful test: a test which at least as powerful as any other test for a given θ
Uniformly more powerful test: a test which is the more powerful test for any value of θ

A less powerful test might be preferrable if more robust than the UMP1

If we increase the number of observations, it makes sense to require consistency
The more observations we add, the more the test distinguishes between the two hypotheses
Power function tends to a step function for N →∞

Biased test: argmin(p(θ)) 6= θ0

More likely to accept H0 when it is false than
when it is true

Big no-no for θ0 vs θ1]

Still useful (larger power) for θ0 vs θ2

Plot from James, 2nd ed.
1Robust: a test with low sensitivity to unimportant changes of the null hypothesis
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Play with Type I (α) and Type II (β) errors freely

Comparing only based on the power curve
is asymmetric w.r.t. α
For each value of α = p(θ0), compute
β = p(θ1), and draw the curve

Unbiased tests fall under the line 1− β = α
Curves closer to the axes are better tests

Ultimately, though, choose based on the
cost function of a wrong decision

Bayesian decision theory

Plot from James, 2nd ed.
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Find the most powerful test

Testing simple hypotheses H0 vs H1, find the best critical region

Maximize power curve 1− β =
∫

wα
f (X|θ1)dX, given α =

∫
wα

f (X|θ0)dX

The best critical region wα consists in the region satisfying the likelihood ratio equation

`(X, θ0, θ1) :=
f (X|θ1)

f (X|θ0)
≥ cα

The criterion, called Neyman-Pearson test is therefore
If `(X, θ0, θ1) > cα then choose H1
If `(X, θ0, θ1) ≤ cα then choose H0

The likelihood ratio must be calculable for any X
The hypotheses must therefore be completely specified simple hypotheses
For complex hypotheses, ` is not necessarily optimal
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Intermezzo: the Wilks theorem

The likelihood ratio is commonly used
As any test statistic in the market, in order to select critical regions based on confidence
levels it is necessary to know its distribution

Run toys to find its distribution (very expensive if you want to model extreme tails)
Find some asymptotic condition under which the likelihood ratio assumes a simple known form

Wilks theorem: when the data sample size tends to∞, the likelihood ratio tends to
χ2(N − N0)

Check if it’s actually true!
wget https://raw.githubusercontent.com/vischia/statex/master/wilks.R
wget https://raw.githubusercontent.com/vischia/statex/master/wilks.ipynb
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Verifying the Wilks theorem: N=2

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=10

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=100

Log−likelihood ratio

Sampled values of log−likelihood ratio values

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Vischia Statistics for HEP March 16th and 18th, 2020 39 / 99



Bayesian model selection — two models...

The parameter θ might be predicted by two models M0 and M1: P(θ|~x,M) =
P(~x|θ,M)P(θ|M)

P(~x|M)

A step further than yesterday in writing down the Bayes theorem: now multiple conditioning
P(~x|M) =

∫
P(~x|θ,M)P(θ|M)dθ: Bayesian evidence or model likelihood

Posterior for M0: P(M0|~x) =
P(~x|M0)π(M0)

P(~x)

Posterior for M1: P(M1|~x) =
P(~x|M1)π(M1)

P(~x)

The odds indicate relative preference of one model over the other

Posterior odds: P(M0|~x)
P(M1|~x)

=
P(~x|M0)π(M0)
P(~x|M1)π(M1)

Posterior odds = Bayes Factor × prior odds

B01 :=
P(~x|M0)
P(~x|M1)

Various slightly different scales for the Bayes Factor
Interesting: deciban, unit supposedly theorized by Turing (according to IJ Good) as the smallest
change of evidence human mind can discern

Jeffreys
Kass and Raftery Trotta

Images from Wikipedia and from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — ...with many models

Image from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — Discourage nonpredictive models

The Bayes Factor also takes care of penalizing excessive model complexity

Highly predictive models are rewarded, broadly-non-null priors are penalized

From Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayes vs p-values: the Jeffreys-Lindley paradox
Data X (N data sampled from f (x|θ))<

H0:θ = θ0. Prior: π0 (non-zero for point mass, Dirac’s δ, counting measure)
H1: θ! = θ0. Prior: π1 = 1− π0 (usual Lebesgue measure)

Conditional on H1 being true:
Prior probability density g(θ)

If f (x|θ) ∼ Gaus(θ, σ2), then the sample mean X̄ ∼ Gaus(θ, σtot = σ/N)

Likelihood ratio of H0 to best fit for H1: λ =
L(θ0)

L(θ̂)
= exp(−Z2/2) ∝ σtot

τ
B01; Z := θ̂−θ0

σtot

λ disfavours the null hypothesis for large significances (small p-values), independent of sample size
B01 includes σtot/τ (Ockham Factor, penalizing H1 for imprecise determination of θ), sample
dependent!

For arbitrarily large Z (small p-values), λ disfavours H0, while there is always a N for which B01
favours H0 over H1

Image from Cousins, doi:10.1007/s11229-014-0525-z
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Testing hypotheses near the boundary: Zech

Counting experiment: observe n events

Assume they come from Poisson processes: n ∼ Pois(s + b), with known b

Set limit on s given nobs

Exclude values of s for which P(n ≤ nobs|s + b) ≤ α (guaranteed coverage 1− α)
b = 3, nobs = 0

Exclude s + b ≤ 3 at 95%CL
Therefore excluding s ≤ 0, i.e. all possible values of s (can’t distinguish b-only from very-small-s)

Zech: let’s condition on nb ≤ nobs (nb unknown number of background events)
For small nb the procedure is more likely to undercover than when nb is large, and the distribution of
nb is independent of s
P(n ≤ nobs|nb ≤ nobs, s + b) = ... =

P(n≤nobs|s+b)
P(n≤nobs|b)
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Beyond coverage: CLs

Goal: seamless transition between exclusion, observation, discovery (historically for the
Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Get your confidence levels right

Find a monotonic Q for increasing signal-like
experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B
hypothesis, favouring B-only

CLb = Pb(Q ≤ Qobs)
Large (close to 1) values imply poor compatibility with
B-only, favouring S + B

What to do when the estimated parameter is
unphysical?

The same issue solved by Feldman-Cousins
If there is also underfluctuation of backgrounds, it’s
possible to exclude even zero events at 95%CL!
It would be a statement about future experiments
Not enough information to make statements about the
signal

Normalize the S + B confidence level to the B-only
confidence level!

Plot from Read, CERN-open-2000-205
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Avoid issues at low signal rates

CLs :=
CLs+b

CLb

Exclude the signal hypothesis at confidence level CL if
1− CLs ≤ CL
Ratio of confidences is not a confidence

The hypotetical false exclusion rate is generally less
than the nominal 1− CL rate
CLs and the actual false exclusion rate grow more
different the more S + B and B p.d.f. become similar

CLs increases coverage, i.e. the range of parameters
that can be exclude is reduced

It is more conservative
Approximation of the confidence in the signal hypothesis
that might be obtained if there was no background

Avoids the issue of CLs+b with experiments with the
same small expected signal

With different backgrounds, the experiment with the
larger background might have a better expected
performance

Formally corresponds to have H0 = H(θ! = 0) and
test it against H1 = H(θ = 0)

Test inversion!

Dashed: CLs+b
Solid: CLs

S < 3: exclusion for a B-free search ≡ 0

Plot from Read, CERN-open-2000-205
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A practical example: Higgs discovery - 1

Apply the CLs method to each Higgs mass point
Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis

Obtained by taking the quantiles of the B-only hypothesis

Plot from Higgs discovery paper
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Deal with CLs!

Now let’s play with CLs!

wget https://raw.githubusercontent.com/vischia/statex/master/cls_counting.ipynb

You will need to install the first two (the other two are for the next exercises)
pip3 install pyhf -user
pip3 install uproot -user
pip3 install -user pyunfold
pip3 install -user seaborn
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Quantifying excesses

Quantify the presence of the signal by using the background-only p-value
Probability that the background fluctuates yielding and excess as large or larger of the observed one

For the mass of a resonance, q0 = −2logL(data|0,θ̂0)

L(data|µ̂,θ̂)
, with µ̂ ≥ 0

Interested only in upwards fluctuation, accumulate downwards one to zero

Use pseudo-data to generate background-only Poisson counts and nuisance parameters θobs
0

Use distribution to evaluate tail probability p0 = P(q0 ≤ qobs
0 )

Convert to one-sided Gaussian tail areas by inverting p = 1
2 P
χ2
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Left plot by Pietro Vischia, right plot from ATL-PHYS-PUB-2011-011 and Higgs discovery paper
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The Look-elsewhere effect — 1
Searching for a resonance X of arbitrary mass

H0 = no resonance, the mass of the resonance is not defined (Standard Model)
H1 = H(M 6= 0), but there are infinite possible values of M

Wilks theorem not valid anymore, no unique test statistic encompassing every possible H1
Quantify the compatibility of an observation with the B-only hypothesis

q0(m̂X) = maxmX q0(mX)

Write a global p-value as pglobal
b := P(q0(m̂X) > u) ≤ 〈Nu〉+ 1

2 P
χ2

1
(u)

u fixed confidence level
Crossings (Davis, Biometrika 74, 33–43 (1987)) , computable using pseudo-data (toys)

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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The Look-elsewhere effect — 2

Ratio of local (excess right here) and global (excess anywhere) p-values: trial factor
Asymptoticly linear in the number of search regions and in the fixed significance level

Dashed red lines: prediction based on the formula with upcrossings
Blue: 106 toys (pseudoexperiments)

Here asymptotic means for increasingly smaller tail probabilities

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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The Look-elsewhere effect, now also in 2D — 1
Extension to two dimensions requires using the theory of random fields

Excursion set: set of points for which the value of a field is larger than a threshold u
Euler characteristics interpretable as number of disconnected regions minus number of holes

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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The Look-elsewhere effect, now also in 2D — 2

Asymptoticity holds also for the 2D effect, as desired
Dashed red lines: prediction based on the formula with upcrossings
Blue: 200k toys (pseudoexperiments)

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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Measuring differential distributions
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Unfolding: the problem

Unfolding it’s about how to invert a matrix that should not be inverted

L = (y− Ax)T Vyy(y− Ax),

Observations y, to be transformed in the theory space into x
Model the detector as a response matrix
Invert the response to convert experimental data to theory space distributions
Usually to compare with models in the theory space

The best solution is to fold any new theory and make comparisons in the experimental data
space
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Unfolding: naïve solutions

Bin-by-bin correction factors x̂i = (yi − bi)
Ngen

i
Nrec

i
; disfavoured

Heavy biases due to the underlying MC truth
Yields the wrong normalization for the unfolded distribution

Invert the response matrix x̂ = A−1(y− b)
Only for square matrices, but always unbiased
Oscillation patterns (small determinants in matrix inversion)
Patterns also seen as large negative ρij ∼ −1 near diagonal
Result is correct within uncertainty envelope given by Vxx
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Unfolding: regularization 1/

χ2
TUnfold =χ2

A + τ 2χ2
L

χ2
A = (Ax̂ + b− y)T(Vyy)

−1(Ax̂ + b− y)

χ2
L = (x̂− xB)TLTL(x̂− xB)

Choose τ corresponding to maximum curvature of L-curve

Or minimize the global ρavg = 1
Mx

∑Mx
j=1 ρj

Often results in stronger regularization than L-curve
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Unfolding: regularization 2/

L(x, λ) = L1 + L2 + L3,

L1 = (y− Ax)
T Vyy(y− Ax),

L2 = τ
2
(x− fbx0)

T
(LT L)(x− fbx0),

L3 = λ(Y − eT x),

Y =
∑

i

yi,

ej =
∑

i

Aij.

y: observed yields

A: response matrix

x: the unfolded result

L1: least-squares minimization
(Vij = eij/eiiejj correlation coefficients)

L2: regularization with strength τ

Bias vector fbx0: reference with respect to
which large deviations are suppressed

L3; area constraint (bind unfolded
normalization to the total yields in folded
space)
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Unfolding: Iterative Unfolding
Iterative improvement over the result of a previous iteration;
x(n+1)

j = x(n)
j
∑M

i=1
Aij
εj

yi∑N
k=1 Aikx(n)

k +bi

It converges (slowly, Niter ∼ N2
bins) to the MLE of the likelihood for independent Poisson-distributed yi

Not necessarily unbiased for correlated data (does not make use of covariance of input data Vyy)
In HEP most people don’t iterate until convergence

Fixed Niter is often used; the dependence on starting values provides regularization
Intrinsically frequentist method

for Niter →∞ converges to matrix inversion, if all x̂j from matrix inversion are positive
Niter = 0 sometimes called improperly “Bayesian” unfolding (the author, D’Agostini, is Bayesian)

Don’t use software defaults!!! (e.g. some software has Niter = 4)
Minimizing the global ρ is a good objective criterion, but there are others (Akaike information, etc)
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Exercise time!

I don’t really have to add anything to the wonderful pyunfold tutorials:
https://github.com/jrbourbeau/pyunfold/tree/master/docs/source/notebooks

Basic unfolding
wget tutorial.ipynb

Change your prior!
wget user_prior.ipynb

Regularization
wget regularization.ipynb

Multivariate unfolding
wget multivariate.ipynb

You can get them all by running
the pyunfold/https://raw.githubusercontent.com/vischia/statex/master/pyunfold/get.sh script
from the exercises repository
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What if we don’t have a likelihood?
Likelihood p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i pi(zi|θ, z<i)

Latent states sampled from zi ∼ pi(zi|θ, z<i)
Final output sampled from x ∼ px(x|θ, z)
Observables x from particle generator; dependency on latent zs (matrix element, parton shower,
detector...)

Want to do inference in θ given a p(x|θ) which is intractable; likelihood trick;
Train a classifier (NN) to separate samples from p(x|θ0) and p(x|θ1)
Likelihood ratio between θ0 and θ1 by inverting the minimization of the binary cross-entropy loss

Joint score t(x, z|θ0) and likelihood ratio r(x, z|θ0, θ1) computable from simulated samples
Train parameterized estimators, then likelihood ratio is the minimum of loss function
Or local approximation, then the score is a sufficient statistic for inference

Rewrite the EFT likelihood in a basis in which it is a mixture model
Calculate the full true parton-level likelihood starting from N simulated events

Obtain a sufficient statistic for inference; exploit all available information!
Inference not limited anymore by the size of the generated samples

Images from arXiv:1805.12244 and arXiv:1805.00020

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00020


Machine Learning: a general definition
Vast amounts of data are being generated in many fields, and the statistician’s job is to make
sense of it all: to extract important patterns and trends, and understand “what the data says.”
We call this learning from data. (Hastie, Tibshirani, Friedman, Springer2017)

Classification into categories
Regression of physical observables

Well-defined mathematical problems
Well-defined validation procedures

Figures from Hastie, Tibshirani, Friedman, Springer 2017, and from AMVA4NewPhysics deliverable 1.1 public report
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Classify events with a decision tree (Decision Tree)

From http://www.r2d3.us/una-introduccion-visual-al-machine-learning-1/
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Boosted decision trees
Ada(ptive)Boost: increase at each iteration the importance of events which were
badly-classified at previos iteration

GradientBoost: fit the new predictor to the residual errors of the previous one
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Neural networks...

From http://homepages.gold.ac.uk/nikolaev/perceptr.gif and
https://i.pinimg.com/originals/e3/fa/f5/e3faf5e2a977f98db1aa0b191fc1030f.jpg

From https://www.cs.utexas.edu/ teammco/misc/mlp/mlp.png
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... and how to train them

Dataset

Muestra de
entrenamiento

Muestra
de

prueba

Muestra
de

Aplicación

Parametrización

Etiqueta
conocida

Etiqueta
estimada

Utilización
de la red

entrenada

Validación y
a veces

optimización
de la red

entrenada

Image copyright Pietro Vischia, 2019
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Loss function and backpropagation

Adjust the parameters of each neuron and each connetion, back-propagating to the inputs the
error in the final classification

Differentiation and matrix (tensor) calculus; dedicated software, autodifferentiation
frameworks (e.g. tensorflow)

Minimization of a loss function, which can be designed to optimize with different objectives in
mind

Images from http://www.adeveloperdiary.com
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The era of mathematical representations

Change representation of a problem (metric of the space)

Sometimes gives access to discriminating power which would be inaccessible (or very difficult
to pick up)

Disentanglement of concepts

Images from http://www.deeplearningbook.org
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Deep learning and sparse connections

Sparse connections, parameter-sharing between different portions of the network

Efficient: less parameters, easier differentiation

Abstraction of properties (e.g. recognize the same object in different places of the image)

Convolution Sparse connections
Shared parameters

Images from http://www.deeplearningbook.org
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Model sequences: recurrent networks
From recurrent networks...

Sequencies of data with a common parameter (e.g. time, for time series)
Recognize elements in different places of sequencies with different length (e.g. words in sentences)
Varios ways of building networks (one output at each step, or a single final ouput, etc)

...to recursive networks
Generalization to deep tree
Reduced depth, helps identifying long-range dependencies (b/ween distant elements)
Applications to data structures processing, language structures, computer vision

Images from http://www.deeplearningbook.org

Vischia Statistics for HEP March 16th and 18th, 2020 71 / 99



Adversarial networks
Many networks exhibit human-level performance (e.g. image classification)
Focus on the badly classified images (to understand if the network has human-level
understanding)
Examples with extremely small differences (indistinguishable for humans) result in
misclassification by network 100% of the times!
Train two networks at the same time, one trying to fool the other

Green network: tries to capture the shape of data
Blue network: estimates the probability that a point comes from data instead of from the green
network
Strategy: Green network tries to make Blue network misfunction
(some people say: Green network is Sporting Lisboa, Blue network is Benfica)

x

z

X

Z

X

Z

X

Z
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Object ID
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BDTs for object identification: the case of H→ γγ

Object identification done with ML techniques since the Higgs discovery

Classification problem (e.g. real photons vs objects misidentified as photons)
γ identification score for the lowest-score

photons

BDT score of the photon ID
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Object ID enters the era of mathematical representations — 1

Identification of jets from bquarks (b tagging) at CMS
CSV (Run I and first part of Run II): BDT sensitive to the
presence of secondary vertices

DeepCSV: similar inputs, generic DNN
Domain knowledge informs the choice of the better
mathematical representation

Main criterion to choose the classification technique

What’s the best representation for jets?
Convolutional networks for images
Structure based on individual particles

CMS DeepJet, plot from Emil Bols’ talk at IML workshop
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Object ID enters the era of mathematical representations — 2

Clear gain even with respect to using a generic DNN (DeepCSV)

CMS DeepJet
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Combining MVA ID for object identification

Dedicated BDT, one score for each event, representing the mass resolution of the diphoton
system

The photon ID BDT output is used as an input
High score for diphoton pairs with kinematic properties similar to signal, good mass resolution, and
high individual γ ID score

Validated in Z→ ee events where electrons are reconstructed as photons

Transformed score of the diphoton BDT
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End-to-end reconstruction of jets

Project detector layers in a single map

Treat as an image: Res(idual)Net(works)

Role of tracks in the reconstruction by the network is the same as
we expect from the physics we know
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Signal extraction
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Separate signal from background using selection cuts
High fraction of correct events in ttH categories by removing events from the dataset
Delicate: removing events based on MVA output introduces tricky dependency on simulation

Dangerous, e.g. prevents from using unfolding results in comparisons with non-SM processes
In both channels, remove events with low diphoton-BDT score

Threshold optimized simultaneously with γγ-ID score, maximizing expected precision on signal
strength

ttH leptonic

≥ 1 e/µ

≥ 2 jets

≥ 1 btagged jet

ttH hadronic

≥ 3 jets

≥ 1 btagged jet

0 e/µ

BDT classifier (inputs: Njets, pleadjet
T , lead and

sublead btag scores)
BDT score of the ttH Hadronic MVA
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Separate signal from background using all events
Increase sensitivity by keeping the full MVA score distribution, possibly separating it into
regions

Different fraction of signal/background
Constrain normalization or uncertainties in background-dominated regions

From ttH (bb), CMS-PAS-HIG-16-004Vischia Statistics for HEP March 16th and 18th, 2020 81 / 99



Unknown parameters? Parameterized Machine Learning can help you!

Classifier sensitive to the value of the
parameter

Train using as an input the true value of the
parameter (signal) or a random value
(background)
Evaluate in slices at fixed values of the
parameter

Equal or better than training for individual
values, and permits interpolation!
We already use it!!

First application in: CMS-HIG-17-006
Recent application:
CMS-HIG-18-004, arXiv:1908.09206 ,
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From Baldi et al. arXiv:1601.07913
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Different techniques are “better” for different situations

Each classification or regression problem is a distinct problem
Choice of the algorithm dictated e.g. by the structure of data and the complexity of the problem
(network capacity)

Sometimes not trivial: CMS-HIG-18-004, arXiv:1908.09206 ,
20–40% improvement w.r.t. single-variable result (HT ) usando BDT (single lepton) and parameterized
DNN (dilepton)
DNN: more sensitive at low mass, where the BDT has not enough capacity to discriminate similar
topologies (tt vs H±)
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Reduce complexity: how many BDTs do you have?

ttH multilepton: two different classifiers
BDT1: ttH vs tt
BDT2: ttH vs ttV

Finely partition the 2D plane (BDT1, BDT2)
Use a training sample to calculate binning
Apply to the application sample used for
inference

Define the target Nbins with clustering
techniques (k-means)
Finally separate regions based on empirical
likelihood

Likelihood ratio approximated by S
B

Ordering from the Neyman-Pearson lemma
Quantile-based binning

BDT classifier output (2LSS)

Final 1D discriminator (2LSS)
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CMS-PAS-HIG-17-004, part of CMS-HIG-17-018: evidence for ttH production in multilepton final states
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End-to-end event classification

Low-level data representation
Tracker, electromagnetic calorimeter,
hadronic calorimeter
Various possible geometries

Mass decorrelation to avoid structure
sculpting

Transform Eγγ in units of Mγγ
Extension of pivoting technique

Training with a 3-classes ResNet
(H→ γγ, γγ, γ+jet)

Statistically-limited technique

From arXiv:1807.11916Vischia Statistics for HEP March 16th and 18th, 2020 85 / 99

https://arxiv.org/abs/1807.11916


What if you don’t know your signal?
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Gaussian processes)
Multivariate gaussian associated to a set of
random variables (Ndim = Nrandom variables)

Kernel as a similarity measure between bin
centers (counts) and a averaging function

Signal is not parameterized
Hyperparameters fixed by the B-only fit

S: residual of B-subtraction

AMVA4NewPhysics deliverable 2.5 public report

Inverse Bagging

Data: mixture model with small S
Classification based on sample properties

Compare bootstrapped samples with
reference (pure B)
Use Metodiev theorem to translate inference
into signal fraction

Validate with LR y LDA
Promising results
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What about the uncertainties?
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Can we reduce the impact of uncertainties on our results?

Adversarial networks used to build pivot quantities
Quantities invariant in some parameter (typically nuisance parameter representing an uncertainty)

Best Approximate Mean Significance as tradeoff optimal/pivotal
Eλ(θf , θr) =Lf (θf )−λLr(θf , θr)
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From Louppe-Kagan-Cranmer, arXiv:1611.01046
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Reminder: likelihood function and Fisher information
The (second) derivative of the likelihood function is connected to the quantity of information
you can extract from data

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
The likelihood function contains all the information that you can extract from data on the
parameter θ
A narrow likelihood function carries more information than a broader one

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Broad prior vs narrow prior

θ

Li
ke

lih
oo

d 
(a

.u
.)

Likelihood
Prior
Posterior

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Broad prior vs narrow prior

θ

Li
ke

lih
oo

d 
(a

.u
.)

Likelihood
Prior
Posterior

From Vischia, book in preparation
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INFERNO: inference-aware neural optimization
Build non-parametric likelihood function based on simulation, use it as summary statistic
Minimize the expected variance of the parameter of interest

Obtain the Fisher information matrix with automatic differentiation, and use it as loss function
For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound V[θ̂] ∼ 1

θ̂
(see my Monday lesson)
Constraints via auxiliary measurements (typically on nuisance parameters) included in covariance
matrix out of the box

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report
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Which data should we take?
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What if we don’t know which data to take?
Represent data as geographically-organized images

Local focus: detector layers treated independently
Regional focus: detector layers treated independently
but simultaneously (spot problems between layers)

Autoencoders (noise detection, dimensionality
reduction)

Encode the inputs to the hidden layer
Decode the hidden layer to an approximate
representation of the inputs

From arXiv:1808.00911
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Tracking

Graph networks to literally connet the dots

The HEP.TrkX project, S. Gleyzer’s talk at 3rd IML workshop
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What if you need to do it quickly?

Real-time event processing requires
low-latency and low-power-consumption
hardware: FPGAs

Case study: classify structures inside jets
(jet substructure)

Compression, quantization, parallelization
digital signal processing (arithmetic) blocks
(DSPs),

From arXiv:1804.06913
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Next? Probably Deep Q learning (reinforcement learnin)

Boosted objects decay to collimated jets
reconstructed as a single jet

Fat jet grooming: remove soft wide-angle
radiation not associated with the underlying
hard substructure

Images from arXiv:1903.09644 and The Auckland Dog Coach
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Statistics is about answering questions
...and posing the questions in an appropriate way

Foundations
Mathematical definition of probability
Bayesian and Frequentist realizations

How wide is the table?: Point estimates and the method of maximum likelihood
Is it really that wide, or am I somehow uncertain about it?: Interval estimates

Maximum likelihood
Neyman construction
Feldman-Cousins ordering
Coverage

Is the table a standard-size ping-pong table or not? Testing hypotheses
Frequentist hypothesis testing, and some mention to the Bayesian one
I need no toy: the Wilks theorem
Upper limits and the CLs prescription

Can I decouple my result from my instrumentation? Unfolding
How can I exploit learning algorithms? Machine Learning

Machine learning is a well defined mathematical technique
Used in many flavours across all the spectrum of tasks in HEP

Are you satisfied? Tell me more by clicking here https://forms.gle/XntoBLdDoUmqZYcL7

Vischia Statistics for HEP March 16th and 18th, 2020 97 / 99

https://docs.google.com/forms/d/e/1FAIpQLSegiMm37X6VjmYMzzCugo0R-72X3rJAxM-z_oQAPYiwprCvNA/viewform?usp=sf_link


THANK YOU VERY MUCH FOR
ATTENDING!!

This course has already improved on the fly thanks to you!
I’ll take any further feedback and trasforming into improvements for the

next edition!
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Non-exhaustive list of references

Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific

Glen Cowan: Statistical Data Analysis - Oxford Science Publications

Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press

Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge
University Press

E.T. Jaynes: Probability Theory - Cambridge University Press 2004

Annis?, Stuard, Ord, Arnold: Kendall’s Advanced Theory Of Statistics I and II

Pearl, Judea: Causal inference in Statistics, a Primer - Wiley

R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley

Kyle Cranmer: Lessons at HCP Summer School 2015

Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622

Roberto Trotta: Bayesian Methods in Cosmology - https://arxiv.org/abs/1701.01467

Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures,
2015 https://indico.cern.ch/category/72/

Christian P. Robert: The Bayesian Choice - Springer

Sir Harold Jeffreys: Theory of Probability (3rd edition) - Clarendon Press

Harald Crámer: Mathematical Methods of Statistics - Princeton University Press 1957 edition
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THANKS FOR THE ATTENTION!
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