# Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

(Presented by:) Miguel Levy

June 8, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Overview

#### Introduction

The HH production in the SM and Beyond The  $bb\tau\tau$  channel

#### **Object Reconstruction and Event Selection**

Object Reconstruction Complex Objects Event Selection

#### Signal Region and Discriminating Observables

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

**Background Estimation** 

Systematic Uncertainties

Results

Summary

-Introduction

└─ The HH production in the SM and Beyond

# HH production in the SM



Trilinear coupling

Box Diagram

#### Destructive Interference

Introduction

L The HH production in the SM and Beyond

# HH production in the SM

$$V(\phi) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2,$$
$$\mu = -\frac{1}{2} M_H^2, \quad \lambda = \frac{M_H^2}{v^2}$$
$$\phi \to \frac{1}{\sqrt{2}} (v + H)$$
$$\downarrow$$
$$\lambda_{HHH} = \frac{3M_H^2}{v}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

-Introduction

-The HH production in the SM and Beyond

# HH production in the SM

$$V(\phi) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2,$$
$$\mu = -\frac{1}{2} M_H^2, \quad \lambda = \frac{M_H^2}{v^2}$$
$$\phi \to \frac{1}{\sqrt{2}} (v + H)$$
$$\downarrow$$
$$\lambda_{HHH} = \frac{3M_H^2}{v}$$

,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

SM Prediction!

-Introduction

-The HH production in the SM and Beyond

# BSM HH production

#### Non-Resonant Production

$$\lambda_{HHH} 
eq rac{3M_{H}^{2}}{v}$$
 , for any mass range

#### **Resonant Production**

$$\begin{array}{c} g & \overbrace{0000} \\ t \\ g & \overbrace{0000} \\ \end{array} \begin{array}{c} y_t & \lambda_{\mathsf{SHH}} \\ \vdots & \vdots \\ S \\ \end{array} \begin{array}{c} \cdot & \mathsf{H} \\ \\ \mathsf{H} \end{array}$$

Resonance for  $p^2 \sim M_S^2$ 

- Introduction

└─ The HH production in the SM and Beyond

# BSM HH production - EFT approach

$$\mathcal{L} = \mathcal{L}_{SM} + \left(c_g \frac{H}{v} + c_{gg} \frac{H^2}{v^2}\right) \frac{g_s^2}{4} G^A_{\mu\nu} G^A_{\mu\nu}$$
$$- \frac{H}{v} m_t k_t y_t \bar{t}t - \frac{H^2}{2v^2} c_2 \bar{t}_i t_i + k_\lambda \lambda_{HHH} H^3$$

#### Coefficients

 $k_t: y_t/y_t^{\rm SM}$ : top yukawa coupling multiplicative deviation from SM  $k_\lambda: \lambda_{\rm HHH}/\lambda_{\rm HHH}^{\rm SM}$ : Higgs trilinear coupling multiplicative deviation from SM

- $c_2$ : top pair coupling to Higgs pair
- $c_g$ : gluon pair coupling to single Higgs
- $c_{gg}$  : gluon pair coupling to Higgs pair

# Why use the $bb\tau\tau$ channel?

```
(One of) the most sensitive
```

Sizeable branching ratio (7.3%) + small background contribution

sensitive channel for HH pair production

| Name        | Decay mode                                                       | $\mathcal{B}$ [%] |
|-------------|------------------------------------------------------------------|-------------------|
| $	au_e$     | $\tau^-  ightarrow {\rm e}^-  \overline{\nu}_{\rm e}  \nu_{	au}$ | 17.8              |
| $	au_{\mu}$ | $\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$                   | 17.4              |
| $	au_h$     | $\tau^-  ightarrow h \nu_{\tau}$                                 | 63.0              |

Other modes with hadrons 1.8

- Object Reconstruction and Event Selection

-Object Reconstruction

# Particle Flow - $\mu^{\pm}$



#### $p_{\mu}$ reconstructed from track curvature

・ロト ・西ト ・ヨト ・ヨー うらぐ

- Object Reconstruction and Event Selection

-Object Reconstruction

# Particle Flow - $e^{\pm}$



 $E_e$  reconstructed from tracker, ECAL, and Bremsstrahlung

Object Reconstruction and Event Selection

-Object Reconstruction

# Particle Flow - $h^{\pm}$



#### $E_{\mathbf{h}^{\pm}}$ from tracker, ECAL, and HCAL

Object Reconstruction and Event Selection

-Object Reconstruction

# Particle Flow - $h^0$



#### $E_{\mathbf{h}^0}$ from ECAL, and HCAL

# Complex Objects: Jets

#### Algorithms

- 1 Particle Flow
- 2 anti- $k_T$

Jets are clustered with different radii ("AK4" and "AK8")

$$p_{\mathsf{jet}} = \sum \vec{p_i}$$

(within 5 to 10 % of true momentum)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Complex Objects: Jets

#### Algorithms

- 1 Particle Flow
- 2 anti- $k_T$
- 3 soft drop

AK8 jets' invariant mass is corrected by iteratively decomposing the jet

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



# Complex Objects: Jets

#### Algorithms

- 1 Particle Flow
- 2 anti- $k_T$

Identifies  $\tau$  decay mode

- 3 soft drop
- 4 Hadron plus strips

|                                                      | Generated                          |                                        |                                             |  |
|------------------------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------|--|
| Reconstructed                                        | $\tau^-  ightarrow h^- \nu_{\tau}$ | $	au^-  ightarrow h^- \pi^0 s   u_	au$ | $\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$ |  |
| $\tau^-  ightarrow h^- \nu_{\tau}$                   | 0.89                               | 0.16                                   | 0.01                                        |  |
| $	au^-  ightarrow {\sf h}^- \pi^0 {\sf s}   u_{	au}$ | 0.11                               | 0.83                                   | 0.02                                        |  |
| $	au^-  ightarrow h^- h^+ h^-  u_{	au}$              | 0.00                               | 0.01                                   | 0.97                                        |  |

 $\pi^0$ s denotes 1 or more  $\pi^0$ 

# Complex Objects: Jets

#### Algorithms

- 1 Particle Flow
- 2 anti- $k_T$
- 3 soft drop jet grooming
- 4 hadrons plus strips

Jet corrections from simulation data and confirmed in situ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Course on Physics at the LHC Object Reconstruction and Event Selection Event Selection

# Identifying $\tau_h \tau_\ell$

#### Trigger

 $e \text{ or } \mu$  in final state

#### Requirements for the selected events

- $p_T > 23~(27)$  GeV and  $|\eta| < 2.1$  for  $\mu$  (e)
- $p_T > 20~{
  m GeV}$  and  $|\eta| < 2.3~{
  m for}~ au_h$
- $I^{\rm rel} < 0.15 \ (0.10)$  for  $\mu \ (e)$
- "medium" working point of multivariate isolation discriminant  $\rightarrow$  60% signal efficiency, and  $0.1 \sim 1\%$  jet misidentification.
- tracks of e,  $\mu$ ,  $\tau_h$  compatible with primary vertex
- $\blacktriangleright$  Discriminants to rule out e and  $\mu$  reconstructed as  $\tau_h$  candidates

Course on Physics at the LHC Object Reconstruction and Event Selection Event Selection

Identifying  $\tau_h \tau_h$ 

Trigger Two  $\tau_h$  candidates

Requirements for the selected events

•  $p_T > 45~{\rm GeV}$  and  $|\eta| < 2.1$ 

• "medium" working point of multivariate isolation discriminant  $\rightarrow$  60% signal efficiency, and  $0.1 \sim 1\%$  jet misidentification.

#### Additional requirements for all final states

- both  $\tau$  leptons must carry opposite charges
- ▶ Only one isolated e or  $\mu$  to reduce  $Z/\gamma^*$  background

Course on Physics at the LHC — Object Reconstruction and Event Selection — Event Selection

# Identifying bb

#### Requirements

2 AK4 jets with  $p_T>20~{\rm GeV}$  and  $|\eta|<2.4$ 

#### Resolved and Boosted

Resonant production of  $m_S>700~{\rm GeV}:$  overlapping jets Jets are reconstructed as 2 AK4 and 1 AK8 lf:

- AK8 invariant mass > 30 GeV
- ▶  $p_T > 170 \text{ GeV}$

geometrically compatible Then:

Boosted Separation between signal and  $t\bar{t}$  background Else: ( $t\bar{t}$  is more spatially separated: no overlapping) Resolved

# Signal Region and Discriminating Observables

 $m_{\tau\tau}$ : Reconstructed from SVfit (combines kinematics from the two visible leptons and  $p_{T}^{miss}$ )

"Resolved":  $m_{bb}$  estimated from the 2 AK4 jet candidates

$$\frac{\left(m_{\tau\tau} - 116 \text{GeV}\right)^2}{\left(35 \text{GeV}\right)^2} + \frac{\left(m_{bb} - 111 \text{GeV}\right)^2}{\left(45 \text{GeV}\right)^2} < 1$$

"Boosted":  $m_{bb}$  estimated from the AK8 jet candidate

 $\begin{array}{l} 80 < m_{\tau\tau} < 152 {\rm GeV} \\ 90 < m_{bb} < 160 {\rm GeV} \end{array}$ 

Signal efficiency: 80%, background reduction: 85%

# Boosted Decision Trees

Training for  $\tau_h \tau_e$  and  $\tau_h \tau_\mu$ 

Further discriminates signal vs. background for "resolved" events

#### Training Regions

- $\blacktriangleright$  Resonant production w/  $m_S \leq 350~{\rm GeV}$  and Non-Resonant
- Resonant production w/  $m_S > 350 \text{ GeV}$

#### **Discriminating Variables**

- $m_{\rm HH}^{\rm KinFit}$  : Kinematic Fit to  $m_{\rm HH}$
- m<sub>T2</sub>("stransverse mass"): largest parent particle mass compatible with kinematics

# Signal Efficiency

65% - 95% depending on  $m_S$ 

#### Background rejection

90% (70%) for (non-)resonant

# **Background Estimation**

| Process                    | Generator                       |  |  |
|----------------------------|---------------------------------|--|--|
| $t\bar{t}$ production      | POWHEG 2.0                      |  |  |
| $Z/\gamma^* \to \ell \ell$ | $MadGraph5_amc@nlo 2.3.2$       |  |  |
| QCD multijet               | estimated from data             |  |  |
| single top production      | POWHEG 2.0                      |  |  |
| SM single H production     | $MadGraph5_amc@nlo 2.3.2$       |  |  |
| W+ jets                    | $MadGraph5_amc@nlo 2.3.2$       |  |  |
| diboson production         | ${ m MadGraph5\_amc@nlo}$ 2.3.2 |  |  |
| Resonant HH production     | MadGraph5_amc@nlo 2.3.2         |  |  |
| Non-Resonant HH production | MadGraph5_amc@nlo 2.3.2         |  |  |

 $Z/\gamma^* \to \ell \ell$  is imperfect at LO  $\to$  corrected from data

# Systematic Uncertainties

- Imperfect Knowledge of detector response
- Discrepancies between simulation and Data
- Limited knowledge of the background and signal processes

Shape Uncertainties: affect the distribution

- Kinematics of  $t\bar{t}$  background: < 1%
- ► Limited number/statistical fluctuations of multijet background: < 7%</p>
- $\blacktriangleright$   $\tau_h$  and jet energy scales correlated with normalization uncertainties

# Normalization Uncertainties

| Systematic uncertainty   | Value       | Processes                                          |  |  |
|--------------------------|-------------|----------------------------------------------------|--|--|
| Luminosity               | 2.5%        | all but multijet, ${\sf Z}/\gamma^* 	o \ell \ell$  |  |  |
| Lepton trigger           | 2-6%        | 11 1 A 14 14 A                                     |  |  |
| and reconstruction       |             | all but multijet                                   |  |  |
| au energy scale          | 3-10%       | all but multijet                                   |  |  |
| Jet energy scale         | 2-4%        | all but multijet                                   |  |  |
| b tag efficiency         | 2-6%        | all but multijet                                   |  |  |
| Background               | 1 10%       | all but multiist $7/\alpha^* \rightarrow \ell\ell$ |  |  |
| cross section            | 1-10%       | an but multijet, $Z/\gamma \rightarrow \ell\ell$   |  |  |
| $Z/\gamma^* 	o \ell\ell$ | 01050/      | 7/~* ~ 00                                          |  |  |
| SF uncertainty           | 0.1-2.5%    | $\mathbf{Z}/\gamma \rightarrow \ell\ell$           |  |  |
| Multijet normalization   | 5-30%       | multijet                                           |  |  |
|                          |             |                                                    |  |  |
| Scale unc.               | +4.3%/-6.0% | signals                                            |  |  |
| Theory unc.              | 5.9%        | signals                                            |  |  |
|                          |             | (日)            |  |  |

# Results

#### Signal tell-tales

Resonant production: Localized excess in  $m_{HH}^{KinFit}$  distribution Non-Resonant production: Excess in the tails of  $m_{T2}$  distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### No evidence for HH pair production

Upper Limit: 95% asymptotic confidence limits Interpretation as exclusion plots for hMSSM Interpretation as exclusion plots for BSM couplings (EFT approach)

## Results - Distributions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Results- $95\% CL_s$ and hMSSM



Exclusion plot for hMSSM in the  $\tan \beta - M_A$  plane



Upper limit of the HH resonant production cross-section as a function of  $M_S$ 

# Results- $95\% CL_s$ and EFT



Exclusion plot for BSM couplings assuming  $c_g = c_{gg} = c_2 = 0$ 

CMS 35.9 fb<sup>-1</sup> (13 TeV) 35% CL on  $\sigma imes B$ (HHightarrow bbaut) [fb] bb  $\tau_{\mu}\tau_{\mu}$  + bb  $\tau_{e}\tau_{\mu}$  + bb  $\tau_{\mu}\tau_{\mu}$ CL upper limits 900 Combined channels Observed 800 Median expected 700 68% expected 95% expected 600 Theoretical prediction 500 400 300 200 100 -20 -10 0 10 20 30 k<sub>λ</sub>/k,

Upper limit of HH production cross-section as a function of  $k_{\lambda}/k_t$ 

# Summary

- Results compatible with the expected SM background contribution
- $\blacktriangleright$  No evidence for signal  $\rightarrow$  upper limits at the 95% confidence level
- ▶ Resonant Production: narrow resonance of mass  $m_S \in [250, 900] \text{ GeV}$
- ▶ hMSSM context:  $m_A \in [230, 360]$  GeV and  $\tan \beta \lesssim 2$  is excluded at 95% CL
- $\blacktriangleright$  EFT: 95% CL on HH  $\sigma$  as a function of  $k_\lambda$  and  $k_t$
- Observed (expected) CL: 30 (25) times the SM prediction
- Highest sensitivity achieved so far for SM HH production at the LHC

# Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Back Up

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### The stransverse mass

Signal

$$pp \rightarrow HH + X \rightarrow (b + \bar{b}) + (\tau^+ + \tau^-) + X$$

#### Dominant Background

$$pp \to \bar{t}t + X \to (b + W^+) + (\bar{b} + W^-) + X$$
$$\to (b + \tau^+ + \nu_\tau) + (\bar{b} + \tau^- + \bar{\nu}_\tau) + X$$

 $m_{T2}$ : mass-bound variable

$$\begin{array}{ll} A' \rightarrow B' + C' & \mbox{B visible} \\ A \rightarrow B + C & \mbox{C invisible} \end{array} \quad m_A = m_{A'}$$

greatest lower bound on  $m_A = m_{A'}$  given kinematic constraints

# The stransverse mass

|                   | signal | backgrounds |          |              |                        |
|-------------------|--------|-------------|----------|--------------|------------------------|
| $\sigma$ [fb]     | hh     | bbWW        | bb	au	au | bb	au	au ew. | S/B                    |
| Before cuts       | 13.89  | 10792       | 2212     | 82.3         | $1.06 \times 10^{-3}$  |
| trigger           | 1.09   | 1966        | 372      | 15.0         | $0.463 \times 10^{-3}$ |
| event sel.        | 0.248  | 383.0       | 43.7     | 2.08         | $0.578 \times 10^{-3}$ |
| $m(\tau^+\tau^-)$ | 0.128  | 107.4       | 16.0     | 0.789        | $1.02 \times 10^{-3}$  |
| $m(bar{b})$       | 0.093  | 29.1        | 4.03     | 0.351        | $2.79 \times 10^{-3}$  |
| $p_{T,bar{b}}$    | 0.041  | 0.480       | 0.247    | 0.079        | 0.050                  |
| $m_{T2}$          | 0.034  | 0.194       | 0.204    | 0.074        | 0.072                  |

# b-tagging

#### Working points