

MBHA-001 test program discussion

G. WilleringG. NinetF. MangiarottiV. DesbiollesM. Bajko

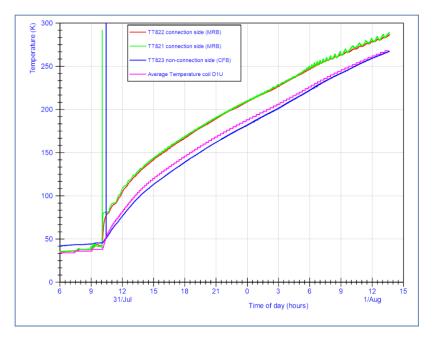
Magnet test program in report EDMS 2268372

2019 November 13 – 11T technical meeting

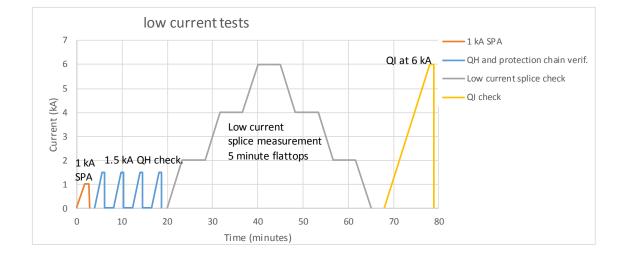
Comparing test program for MBHA to MBHB.

- Cool down and warm up conditions
- HV tests
- Training/holding current tests
- QPS settings
- 4.5 K test
- Magnetic measurements
- Cyclic loading tests
- RRR

Main difference MBHA compared to MBHB


- Presence of 250 A trim circuit.
- Presence of 550 A MCS circuit and 100 A MCO circuit.

Planning

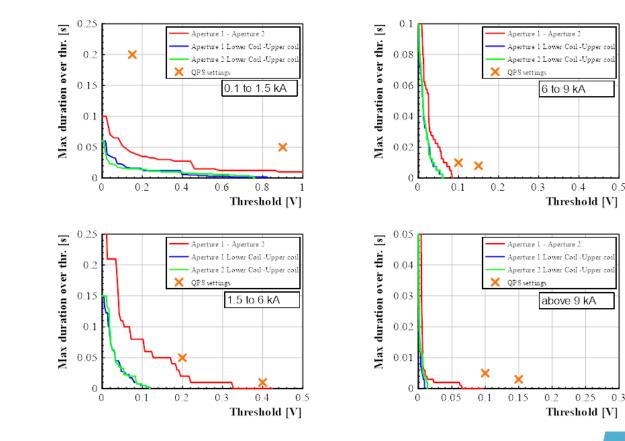

Cool down and warm up

- MBHB-002: ΔT of 30 K (abort process at >45 K)
- MBHB-002: Δ T of 30 K (abort process at >45 K)

Overview low current powering up to 6 kA

Done in MBHB-002

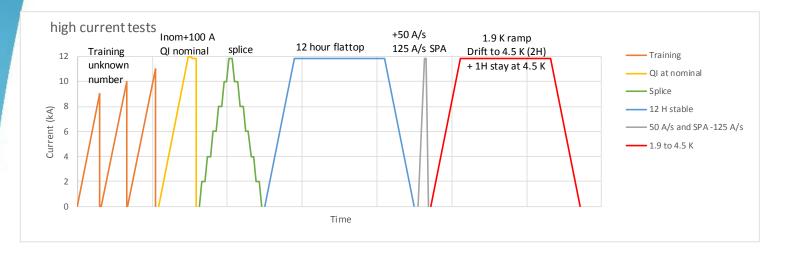
Same proposed for MBHA-001 Cool Down 1


Cool down 2: Skip low current splice and 6 kA QI.

Flux jumps and Quench Detection settings

Protection settings optimized for flux jump in MBHB. Table below shows the settings as used in CD 2. Proposed for MBHA-001 are the same settings.

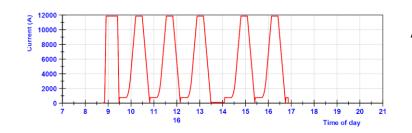
	Threshold, validation time				
Current range	Lowest treshold Shortest validation time				
l < 1.5 kA	150 mV, 300 ms	900 mV, 50 ms (insufficient for protection)			
1.5 kA < I < 6 kA	200 mV, 50 ms	400 mV, 10 ms (insufficient for protection)			
6 kA < I < 9 kA	100 mV, 10 ms	150 mV, 8 ms			
9 kA < I	100 mV, 5 ms	150 mV, 3 ms			

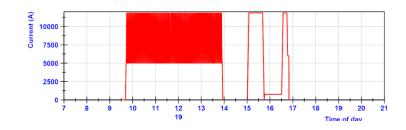


0.5

Threshold at 1.5 kA (200 mV, 50 ms) seems to have least margin to flux jump duration. (can we predict flux jump for MBHA?)

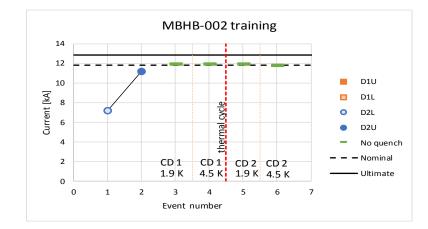
Overview high current powering > 6 kA




Proposed for MBHA-001

Magnetic measurements (2 days)

330 cycles from 5 to 11.85 kA in CD 2 (12 hours continous cycling)



Additional done in MBHB-002

Magnet training

Training up to 11.95 kA maximum *(see EDMS 2213035).* Ramp rate 10 A/s.

MBHB-002 training was very fast with 2 quenches. Hopefully similar for MBHA-001, although more quenches are not excluded.

Stable current

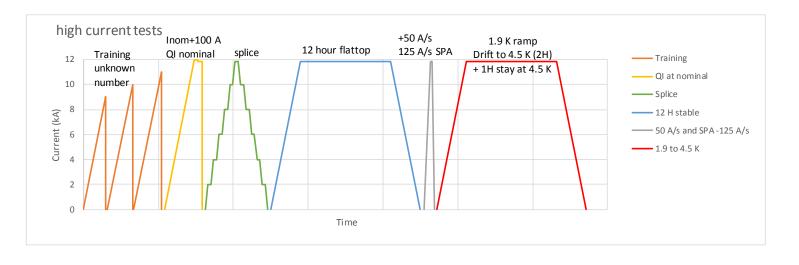
Done for MBHB-002

Cool down 1: 1.9 K, 11.85 kA, 2 hours 4.5 K, 11.85 kA, 1.5 hours

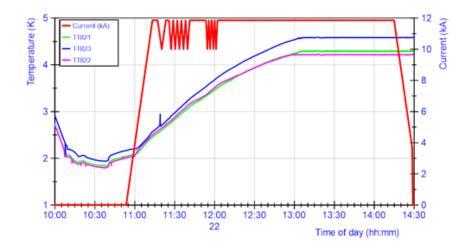
Cool down 2 1.9 K, 11.85 kA, 12 hours 1.9 to 4.5 K, 11.85 kA, 3 hours

Proposed for MBHA-001

Cool down 1: 1.9 K, 11.85 kA, 12 hours 1.9 to 4.5 K, 11.85 kA, 3 hours


Cool down 2 1.9 K, 11.85 kA, 4 hours 1.9 to 4.5 K, 11.85 kA, 3 hours

Ramp rate studies

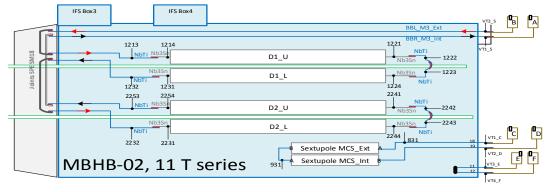

- MBHB-002: Ramp up: up to 100 A/s performed. Ramp down: up to -125 A/s in the SPA test. (required for the LHC during RB energy extraction).
- MBHA-001: One relatively fast ramp at 50 A/s foreseen at 1.9 K, followed by SPA of 125 A/s to show this gives no false trips.

Any ramp at 4.5 K will likely not be feasible due to flux jumps in combination with protection levels.

Magnet margin at 4.5 K

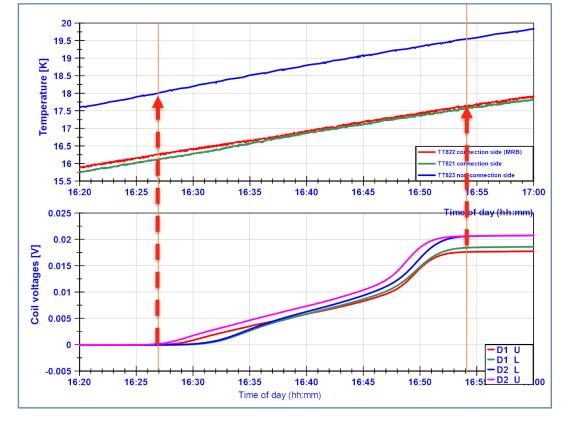
Done for MBHB-002: Drifting from 1.9 K to 4.5 K while powering. This avoids flux jump trips at low current.

Proposed for MBHA-001: Same method is proposed (excluding high current cycling).


Total time about 5 hours (20 min ramp up, 2 hour T-drift, 1 hour flattop, 1 hour back to 1.9 K).

MBHB-002

Splice	Resistance [nΩ]	Comment		
1213-1214	0.15 (1 splice)	NbTi-Nb3Sn		
1221-1224	0.54 (3 splices)	Nb3Sn-NbTi-NbTi-Nb3Sn		
1231-2231	0.61 (3 splices)	Nb3Sn-NbTi-NbTi-Nb3Sn		
2244-2241	0.50 (3 splices)	Nb3Sn-NbTi-NbTi-Nb3Sn		
2254-2253	0.13 (1 splices)	NbTi-Nb3Sn		


Done in MBHB-002: measure up to 3 splices combined. Only if resistance is high > 1 nOhm per 3 splices, redo measurements for individual splices.

Proposed for MBHA-001: Same method.

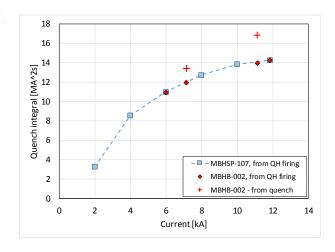
RRR

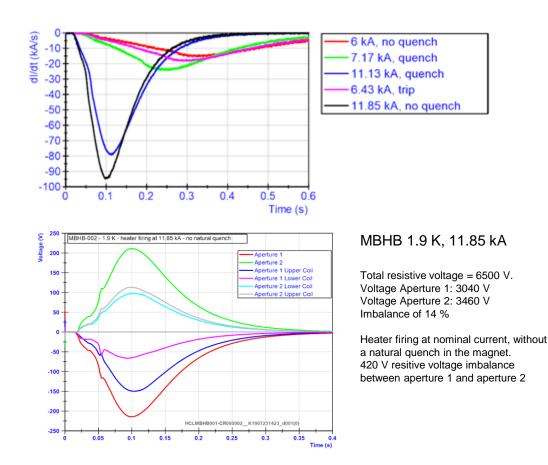
Done in MBHB-002: Accurate transition resistance measurement with slow drift of magnet temperature.

MBHA-001: Two options:

- 1. Use same method during first warmup (Could waste precious time, half a day minimum, but also impossible if just before a weekend).
- 2. Find a better moment (During cooling after a quench, abort cooling once full coil is superconducting, wait until magnet warms up to full transition, then restart cooling down. Other option is after 4.5 K test.)

For now option 1 is in the test program. If we manage option 2, option 1 will be discarded.


Seen as important parameter. Most important: avoid time loss.


Quench integral study at 6 kA and 11.85 kA

Quench heater firing at nominal current gives multiple important data:

- Voltage imbalance between coils following heater firing (important in HV calculations)
- Quench Integral
- dl/dt characteristics.
- Quench Heater efficiency

High Voltage insulation test, instrumentation tests

MBHB-002 and MBHA-001 tests identical.

Note:

MBHB-002 has an MCS magnet circuit. MBHA-001 has an MCO and MCD magnet circuit.

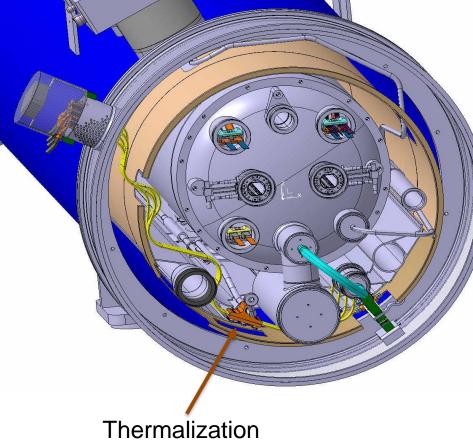
MBHA-001 has **trim leads**, which are connected to the main circuit. By definition it will see the potential of the main circuit.

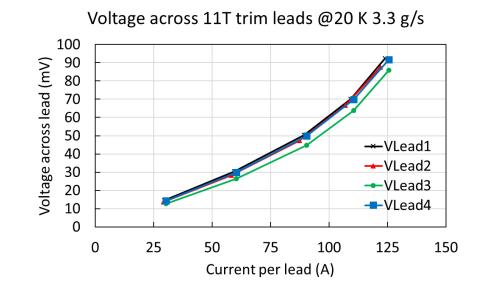
Polarity +	Polarity -	Warm initial	cold	Warm final
Dipole-Quench Heaters	Ground	300/660	300/660/1850/ 3300	300/660
Dipole	Quench Heaters - Ground	300/660	300/640/1850/ 3200	300/660
Dipole	Ground	300/660	300/660/1850/ 3300	300/660
Dipole	All Quench Heaters	300/660	300/640/1850/ 3200	300/660
All Quench Heaters	Ground	300/660	300/660/1850/ 3300	300/660
Dipole	MCS-MCD Correctors	250	250/975	250
MCO/MCD Correctors	Ground	250	250/975	250
Ext/Int Passive Busbar	Ground	600	600/1850/ 3075	600
Ext Passive Busbar	Internal Passive Busbar	600	600/1850/ 3075	600
Cryo Heater	Ground		675	
Cold Temp. Sensor	Ground		25	
Dipole	QH1 to QH 8	300/ 660	300/640/1850/ 3300	300/ 660
QH1 to QH 8	Ground	300/ 660	300/660/1850/ 3300	300/ 660
Dipole	Lead EF_BB11&12	250	250/975	250
Lead EF_BB11&12	Ground	250	250/975	250

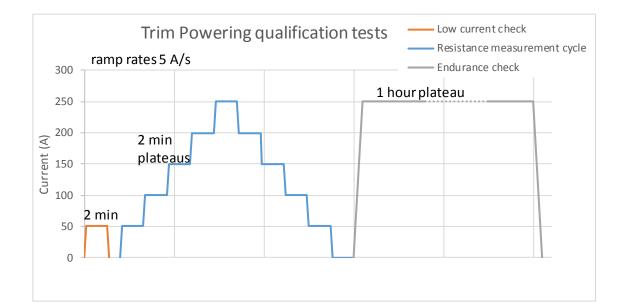
Test request: 200 K, 3 bar, 750 V during final warm up. Risk and impact on planning not know yet. Manual operation, not easy.

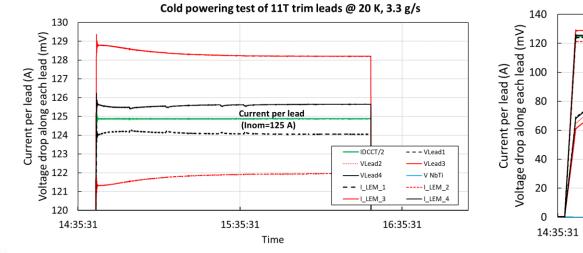

Magnetic Measurements

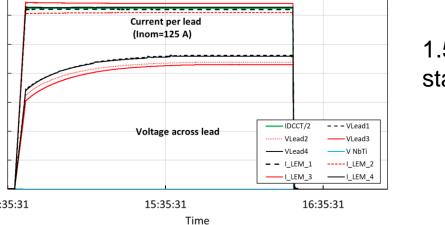
MBHB: Full measurement set done by Lucio, see EDMS 2219199


MBHA: No time allocated to MM, low priority. The MM shaft will be used already for quench localisation. If time permits a machine cycle may be possible.

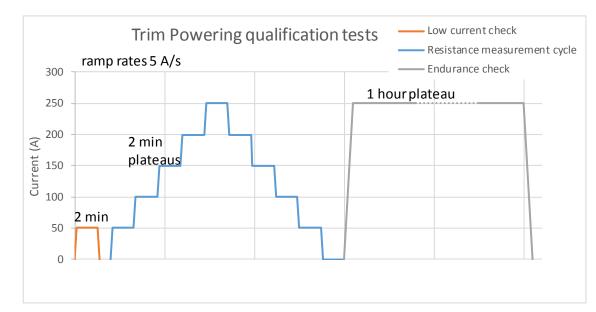

Trim leads






Helium gas flow from CFB boiloff, through magnet feet, then through thermalisation, returning through screen.Helium T measurement only at exit.No helium flow measurement.

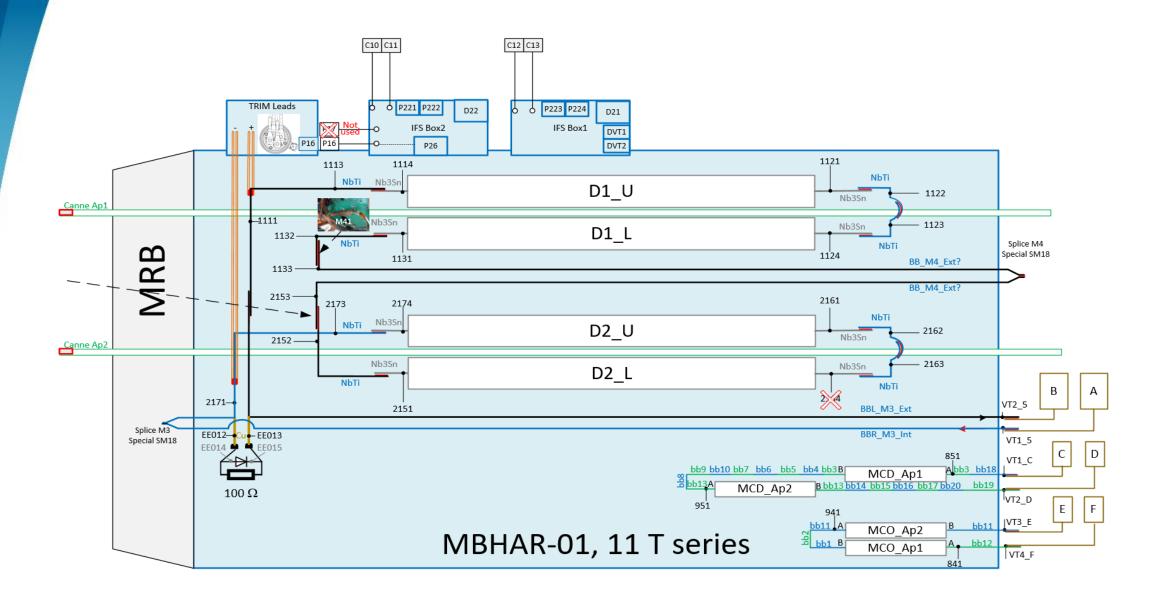
Cold powering test of 11T trim leads @ 20 K, 3.3 g/s



1.5 hour stabilisation time

Trim leads

- Powering with 600 A PC. 13 kA PC always disconnected.
- Quick resistance measurement on 2 minute plateaus, no stabilisation.
- Protection:
 - Normal conducting parts: 150 mV, 10 ms
 - SC parts: 50 mV, 10 ms
- Most important test stable conditions at 250 A.
 - In case of failure, repeat at 220 A.


No time or technical possibility for playing with helium flows and temperatures.

Planning

- Zero contingency in planning, including extended working hours for preparation and test.
- Target is start of warm up

