Muon Collider Conceptual Design and Future Plans

Daniel Schulte for
Jean-Pierre Delahaye, Marcella Diemoz, Ken Long, Bruno Mansoulie, Nadia Pastrone (chair), Lenny Rivkin, Alexander Skirinsky, Andrea Wulzer

Many thanks to Mark Palmer, Vladimir Shiltsev and the MAP and LEMMA teams
Also to Donatella Lucchesi, Christian Carli, Alexej Grudiev, Alessandra Lombardi, Gijs De Rijk, Mauricio Vretenar, ...
Motivation

High energy lepton colliders are precision and discovery machines

\[V = \frac{1}{2} m_h^2 h^2 + (1 + k_3) \lambda_{h\eta h}^{SM} v h^3 + (1 + k_4) \lambda_{h\eta h h}^{SM} h^4 \]

Precision potential

Measure \(k_4 \) to some 10%
With 14 TeV, 20 ab\(^{-1}\)

Discovery reach

14 TeV lepton collisions are comparable to 100 TeV proton collisions

For s-channel physics target

Luminosity goal

(Factor O(3) less than CLIC at 3 TeV)
4x10\(^{35}\) cm\(^{-2}\)s\(^{-1}\) at 14 TeV

\[L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}}{10 \text{ TeV}} \right)^2 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1} \]
Proposed Lepton Colliders (Granada)

Luminosity per facility

CLIC can reach 3 TeV

- Cost estimate total of 18 GCHF
 - In three stages
 - Largely main linac, i.e. energy

- Power 590 MW
 - Part in luminosity, a part in energy

- Similar to FCC-hh (24 GCHF, 580 MW)

Technically possible to go higher in energy

But is it affordable?

R&D required towards higher energies (or improvement of 3 TeV)

- Reduction of cost per GeV (improved NC acceleration, novel acceleration technologies)
- Improved power consumption (higher RF to beam efficiency, higher beam quality)
Short, intense proton bunches to produce hadronic showers

Muons are captured, bunched and then cooled

Pions decay into muons that can be captured

Did find holes in the design but nothing that does not work
No CDR exists, no coherent baseline of machine
No reliable cost estimate
Target Parameter Examples

Muon Collider Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Production Operation</th>
<th>Site Radiation Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoM Energy</td>
<td>TeV</td>
<td>0.126</td>
<td>1.5</td>
</tr>
<tr>
<td>Avg. Luminosity</td>
<td>10^{34}cm$^{-2}$s$^{-1}$</td>
<td>0.008</td>
<td>1.25</td>
</tr>
<tr>
<td>Beam Energy Spread</td>
<td>%</td>
<td>0.004</td>
<td>0.1</td>
</tr>
<tr>
<td>Higgs Production/107 sec</td>
<td></td>
<td>13,500</td>
<td>37,500</td>
</tr>
<tr>
<td>Circumference</td>
<td>km</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>No. of IPs</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>Hz</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>*</td>
<td>cm</td>
<td>1.7</td>
<td>1 (0.5-2)</td>
</tr>
<tr>
<td>No. muons/bunch</td>
<td>10^{12}</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Norm. Trans. Emittance, _TN</td>
<td>mm-rad</td>
<td>0.2</td>
<td>0.025</td>
</tr>
<tr>
<td>Norm. Long. Emittance, _LN</td>
<td>mm-rad</td>
<td>1.5</td>
<td>70</td>
</tr>
<tr>
<td>Bunch Length, _s</td>
<td>cm</td>
<td>6.3</td>
<td>1</td>
</tr>
<tr>
<td>Proton Driver Power</td>
<td>MW</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Wall Plug Power</td>
<td>MW</td>
<td>200</td>
<td>216</td>
</tr>
</tbody>
</table>

Even at 6 TeV above target luminosity with reasonable power consumption
But have to confirm power consumption estimates
The luminosity per beam power is about constant in linear colliders.

It can increase in proton-based muon colliders.

Strategy CLIC:
Keep all parameters at IP constant (charge, norm. emittances, betafunctions, bunch length)
⇒ Linear increase of luminosity with energy (beam size reduction)

Strategy muon collider:
Keep all parameters at IP constant
With exception of bunch length and betafunction
⇒ Quadratic increase of luminosity with energy (beam size reduction)

⇒ Proton-based muon collider promising at high energies
Key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>1.5 TeV</th>
<th>3 TeV</th>
<th>6 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10^{34} cm$^{-2}$s$^{-1}$</td>
<td>1.25</td>
<td>4.4</td>
<td>12</td>
</tr>
<tr>
<td>N</td>
<td>10^{12}</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>f_r</td>
<td>Hz</td>
<td>15</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>P_{beam}</td>
<td>MW</td>
<td>6.75</td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>$$</td>
<td>T</td>
<td>6.3</td>
<td>7</td>
<td>10.5</td>
</tr>
<tr>
<td>ε_L</td>
<td>MeV m</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>σ_E / E</td>
<td>%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ_z</td>
<td>mm</td>
<td>10</td>
<td>5</td>
<td>2(0.5)</td>
</tr>
<tr>
<td>β</td>
<td>mm</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>ε</td>
<td>μm</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>$\sigma_{x,y}$</td>
<td>μm</td>
<td>5.9</td>
<td>3.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

From the MAP collaboration: Proton source
Muon Collider Luminosity Scaling

Key assumptions:
Emittances are preserved from source to collision
Higher energy allows shorter bunches and hence smaller betafunctions
No limits from optics, beam-beam etc.

\[\mathcal{L} \propto \gamma \langle B \rangle \sigma \delta \frac{N_0}{\epsilon L} f_r N_0 \gamma \]

High energy

Large energy acceptance

Dense beam

High beam power

For mostly unchanged technologies:
Luminosity per power naturally increases with energy
(Provided we can focus the beam accordingly, ...)
Better scaling than other options to high energies
The LEMMA Scheme (2018)

Key concept:
Produce muon beam with low emittance using a positron beam
No cooling required

Muon current 10^{11} s^{-1} is 300 times lower compared to $3 \times 10^{13} \text{ s}^{-1}$ for proton driver

Emittance $O(10^{-3})$ smaller than in proton scheme, 40 ns vs. 25 μm

In design of 2018 two important issues were found
• Muon multiple scattering
• Issue with phase space

Attempt to consolidate is ongoing
⇒ Updates this workshop
Note: Stacking

Can increase beam density by stacking

\[\mathcal{L} \propto \gamma \langle B \rangle \sigma \delta \frac{N_0}{\epsilon \epsilon L} f_r N_0 \gamma \]

High energy

High field in collider ring

Large energy acceptance

Dense beam

High beam power

\[\epsilon = \sqrt{\epsilon_x \epsilon_y} \]
Other Options

FCC, LHC tunnel, gamma factory, ...
Review Conclusion

We think we can answer the following questions

• **Can muon colliders at this moment be considered for the next project?**
 • Enormous progress in the proton driven scheme and new ideas emerged
 • But at this moment not mature enough for a proposal

• **Is it worthwhile to do muon collider R&D?**
 • Yes, it promises the potential to go to very high energy
 • It may be the best option for very high lepton collider energies, beyond 3 TeV
 • It has strong synergies with other projects, e.g. magnet and RF development
 • Has synergies with other physics experiments
 • Should not miss this opportunity

• **What needs to be done?**
 • Muon production and cooling is key => A new test facility is required.
 • A conceptual design of the collider has to be made
 • Many components need R&D, e.g. fast ramping magnets, background in the detector
 • Site-dependent studies to understand if existing infrastructure can be used
 • limitations of existing tunnels, e.g. radiation issues
 • optimum use of existing accelerators, e.g. as proton source
Set-up an international collaboration to promote muon colliders and organize the effort on the development of both accelerators and detectors and to define the road-map towards a CDR by the next Strategy update.

Develop a muon collider concept based on the proton driver and considering the existing infrastructure.

Consolidate the positron driver scheme addressing specifically the target system, bunch combination scheme, beam emittance preservation, acceleration and collider ring issues.

Carry out the R&D program toward the muon collider. Based on the progress of the proton-driver and positron-based approaches, develop hardware and research facilities as well as perform beam tests. Preparing and launching a conclusive R&D program towards a multi-TeV muon collider is mandatory to explore this unique opportunity for high energy physics. A well focused international effort is required in order to exploit existing key competences and to draw the roadmap of this challenging project. The development of new technologies should happen in synergy with other accelerator projects. Moreover, it could also enable novel mid-term experiments.
Proposed Tentative Timeline (2019)

MACHINE
- Design
- Construct
- Exploit
- Technologies

DETECTOR
- R&D detectors
- Prototypes
- MDI & detector simulations
- CDRs
- TDRs
- Large Proto/Slice test

Timeline
1. Baseline design
2. Design optimisation
3. Project preparation
4. Approve

Actions
- Ready to decide on test facility
- Cost scale known
- Ready to commit to collider
- Cost known
- Ready to construct

Notes
- Technically limited

D. Schulte
Muon Collider Strategy, CERN, Oct. 2019
Proposed Tentative Timeline (2019)

1. Design
2. Construct
3. Test Facility
4. Design Technologies
5. Ready to decide on test facility
 Cost scale known
6. Baseline design
7. Exploit Design/Models
8. Prototypes/Prototypes
9. Projects
10. Prototypes
11. Pre-series
12. Large Proto/Slice test
13. CRs
14. Full project
15. Higher cost for technical design
16. Significant resources
17. Higher cost for preparation

Limited Cost
Mainly paper design
And some hardware component R&D

Higher cost for test facility
Specific prototypes
Significant resources

Higher cost for technical design
Significant resources

Cost scale known
Cost know

Technically limited

D. Schulte
Muon Collider Strategy, CERN, Oct. 2019
Tentative Considerations on Baseline

• Develop baseline design of first stage $O(3 \, \text{TeV})$
 – To match highest CLIC energy
 – To come after a Higgs-factory with different technology
 – Using the high-energy strength of muon colliders
 – Realistic design for implementation at CERN
 – Determine cost, power and risk scale
 – If successful, feasibility demonstration for CDR

• Explore 14 TeV as further step
 – To match FCC-hh discovery potential
 – Mainly exploration of parameters to guide choices
 – Provide evidence for feasibility, maybe cost frame

• Even higher energies?

• Some exploration of lower energies / Higgs factory
 – Scaling from higher energies
 – Not a main focus, except if other projects do not cover lower energies
Baseline Work

- Put together coherent sets of parameters and layouts
 - Understand parameter choices and drivers, technological challenges
 - Includes both, MAP and LEMMA, scheme
 - MAP currently baseline, LEMMA alternative in particular for high energies
 - This is important step that is missing in the US effort

- Define key R&D list (tentative list started)
 - Identify key / feasibility issues
 - i.e. largest technical risks
 - Key cost driver, if critical
 - Key power consumption, if critical
 - Prime examples
 - Background in experiments
 - Radiation to the public
One Potential Ingredient: ARIES2

• Proposed network-like activity
 – MUST: MUon collider STudy network

• Goal is to foster preparation of an organised study if the European Strategy so recommends
 – Start identification of feasibility issues
 – Identify resources required to address most critical issues
 – Prepare engagement of collaboration

• Support communication of a muon collider study
 – Organise workshops and meeting for the study

• You are welcome to join
 – Will further develop the proposal
Potential Key R&D Items

• Integrated design (to make sure that things fit)
 – Definition of parameters for key systems
 – Choices between different options
 – Many systems could be difficult, depending on choices, see US study
 – E.g. lose 90% of muons before collision, can this be reduced?
 – Important cross effects, e.g. beam emittance

• Neutrino radiation (critical limit at highest energies)
 – How can it be reduced? (Better cooling, orbit variations, high energy at other site?,...)
 – What can be defended to the public?

• Experimental conditions (obvious, isn’t it?)
Potential Key R&D Items, cont.

• Beam production and cooling (critical parameter driver)
 – Emittance drives design, lower emittance: less radiation to public, detector, ...; less power; less risk
 – Proton beam production / compression
 – Paper design of cooling does not reach full performance
 – Many key components: robust targets, RF with gas, high-field solenoids
 – Take full advantage of MICE (data, installation)
 – Likely will find need new facility to improve test compared to MICE
 – Anticipated to be core of new testing programme
 • 6-D cooling, stages to reach significant emittance reduction, radiation effect on equipment, ...
 • Parametric cooling to be tested
 • Likely the core of the experimental programme

• Acceleration complex design (important cost driver)
 – Is it affordable (cost and power)?
 – Fast ramping magnets (for RCS), magnet powering scheme
 – High-field superconducting magnets
 – Beamline design
 – Collimation
 – ...

D. Schulte
Muon Collider Strategy, CERN, Oct. 2019
Potential Key R&D Items, cont.

• Collider ring design (important parameter and cost driver)
 – Is it affordable (cost)?
 – High field superconducting magnets, minimal gap, radiation hard
 – Improved lattice design beyond 3 TeV
 – Injection, safety concept

• Reuse of existing infrastructure (potential cost saving)
 – Proton facilities
 – Tunnels (maybe more for acceleration than for collision)

• LEMMA concept and new ideas (could be breakthrough for parameters)
 – Consolidation
 – Alternative low-emittance sources (gamma factory, crystals, …)
 – Could define the source test facility
 – Long-term alternative development
Many points agree
- We mainly consider experimental conditions and neutrino radiation also as critical

Level of many issues has not been clear because no baseline existed
- We anticipate critical issues there, e.g. design and cost of accelerator complex
Key Accelerator Technologies

• High-field, robust collider magnets with minimum gap
 – Dipoles, solenoids, ...

• Efficient fast ramping magnets with efficient energy recovery
 – For the beam acceleration

• Efficient cryogenics, vacuum and shielding systems
 – Significant beam loss

• Robust targets and beam cleaning

• High field cavities
 – In a solenoid for the cooling system

• Efficient RF power production

• Civil engineering

• Other systems
 – E.g. instrumentation
 – ...

• Beamdynamics and accelerator design
 – Start-to-end design and simulations, source design, ...

D. Schulte
Muon Collider Strategy, CERN, Oct. 2019
Beam Acceleration

An important cost driver
Important for power consumption

A trade-off between cost and muon survival
Not detailed design, several approaches considered
- Linacs
- Recirculating linacs
- FFAGs
- Rapid cycling synchrotrons

Challenge is large bunch charge but single bunch

D. Schulte
Muon Collider Strategy, CERN, Oct. 2019
Potential Approaches

Acceleration is important for cost and power consumption
No conceptual baseline design yet
But different options considered
A whole chain is needed from source to full energy

Recirculating linacs
• Fast acceleration but typically only a few passages through RF, hence high RF cost

Rapid cycling synchrotron (RCS)
• Potentially important acceleration range at affordable cost
• Could use combination of static superconducting and ramping normalconducting magnets
• But have to deal with energy in fast pulsing magnets
• Efficient energy storage is required

FFAGs
• Static high field magnets, can reach factor up to 4 increase in energy, needs design work

Challenge to achieve a combination of high efficiency, low cost and good beam quality
Collider Ring

Strong focusing at IP to maximise luminosity
Becomes harder with increasing energy

High field dipoles to minimise collider ring size and maximise luminosity
Minimise distances with no bending

Proposal to combine last accelerator ring and collider ring (Neuffer/Shiltsev) might reduce cost but creates many specific challenges

Decaying muons impact accelerator components, detector and public
The latter becomes much worse with energy

Radiation to public in case LHC tunnel use

 Might be best to use LHC tunnel to house muon accelerator and have dedicated new collider tunnel
How Could 14 TeV Look Like?

Very tentative target parameters to be studied

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>1.5 TeV</th>
<th>3 TeV</th>
<th>6 TeV</th>
<th>14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10^{34} cm$^{-2}$s$^{-1}$</td>
<td>1.25</td>
<td>4.4</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>N</td>
<td>10^{12}</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>f_r</td>
<td>Hz</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td>3.7</td>
</tr>
<tr>
<td>P_{beam}</td>
<td>MW</td>
<td>6.75</td>
<td>11.5</td>
<td>11.5</td>
<td>16.6</td>
</tr>
<tr>
<td>$\langle B \rangle$</td>
<td>T</td>
<td>6.3</td>
<td>7</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>ε_L</td>
<td>MeV m</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>σ_E/E</td>
<td>%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ_z</td>
<td>mm</td>
<td>10</td>
<td>5</td>
<td>2(0.5)</td>
<td>1.07</td>
</tr>
<tr>
<td>β</td>
<td>mm</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
<td>1.07</td>
</tr>
<tr>
<td>ε</td>
<td>μm</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>$\sigma_{x,y}$</td>
<td>μm</td>
<td>5.9</td>
<td>3.0</td>
<td>1.5</td>
<td>0.63</td>
</tr>
</tbody>
</table>

At 6 TeV MAP design consistent with FNAL site
Radiation at 14 TeV is ~8 times higher than at 6 TeV
Neutrino Radiation Hazard

Neutrinos from decaying muons can produce showers just when they exit the earth

Potential mitigation by:
- Owning the land in direction of experimental insertion
- Having a dynamic beam orbit so it points in different directions at each turn in the arcs
- Some gymnastics with beam in straights to make it point in different directions

Becomes more important at higher energies (scaling E^3)

US study concluded that 6 TeV parameters are OK

But our 14 TeV would have ~8-times the radiation
Muon Collider Luminosity Scaling

Scaling of radiation per integrated luminosity with parameters
Note: target integrated luminosity increases with energy

\[
\frac{D}{\int \mathcal{L}} \propto a E \left(\frac{T}{B} + \frac{L}{0.7 \text{m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta}
\]

Based on Bruce Kings parametrisation of radiation with beam current one finds

\[
a \approx 4 \times 10^{-4} \text{mSv} \frac{1}{ab^{1/2} V^2 m}
\]

Reasonable goal could be 0.1 mSv/year
Radiation at 14 TeV

\[
\frac{D}{\int \mathcal{L}} \propto aE \left(\frac{T}{B} + \frac{L}{0.7 \text{ m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta}
\]

Target of 4 ab\(^{-1}\) per year

\[
\frac{D}{\int \mathcal{L}} = \frac{0.8 \text{ mSv}}{4ab^{1}}
\]

Note: find 0.1 mSv/Year for MAP at 6 TeV, i.e. consistent with this set being limited by radiation

E = 7 TeV
MAP-type beam
B = 10.5 T
L = 0.2 m
d = 500 m

I.e. 8 times too large
Need to improve
Muon Collider Luminosity Scaling

How to gain a factor 8 in radiation?
Seems hard but not impossible

\[\frac{D}{\int L} \propto aE \left(\frac{T}{B} + \frac{L}{0.7 \text{ m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta} \]

Higher field in collider ring
And shorter gaps
Deeper tunnel
Denser beam
Larger energy spread acceptance

Magnet design
Civil engineering
Source design
Lattice design work

More efficient physics
More years of running

Tricks
e.g. beam wiggling, dumping the beam, ...

How to gain a factor 8 in radiation?
Seems hard but not impossible
Some Tools to Reduce Radiation

• Shorter gaps between magnets
 – e.g. 7 cm halves radiation

• More brilliant beams
 – Halving emittance halves radiation

• Wiggling the beam
 – O(8 sigma) starts to help (for 100 m beta-function)

• Dumping the beam before fully decayed
 – Fractional saving

• Cutting large amplitude muons
 – Does not help

• Spread out programme over more years

• Add the two detectors

• ...

D. Schulte
Muon Collider Strategy, CERN, Oct. 2019
Collision in LHC / FCC Tunnel

Collision in LHC tunnel:
• The straights increase neutrino radiation (\(L = 500\) m)
• Equivalent depth of LHC is only 23 m (using shortest distance from straight to surface)
 • At 14 TeV cm and for 4 ab\(^{-1}\) per year \(33 \times 10^3\) mSv/year (\(B = 8\) T, \(L = 500\) m)
 • Can we use special optics or wiggle the beam enough?
 • Typically need to wiggles beam by 10 sigma to obtain some spreading of radiation
• Even arcs are limiting
 • For 14 TeV and 4 ab\(^{-1}\) per year 18.8 mSv/year (\(B = 8\) T, \(L = 0.2\) m)

Collision in FCC tunnel:
• Would be at even higher energies, so radiation is much worse
• But can still change layout
 • In particular arrange straights

Solutions with acceleration and collision in LHC or FCC tunnel will have even more radiation from arcs since the average field is lower

Low emittance beam would help
• Need factor 200 less current
Acceleration in LHC / FCC Tunnel

Logical choice since accelerator needs longer tunnel
• Fewer turns and mostly lower energy
• Gain one or two orders of magnitude in radiation
• Maybe can distribute radiation more due using beam energy change in some clever fashion

Use LHC tunnel for acceleration only:
• For 1.5 TeV beams, require 1.4-1.8 T magnets
 • e.g. can be fast ramping, normal conducting
• For 3 TeV beams, require 2.8-3.6 T average field
 • e.g. could be mixture of superconducting and fast-ramping normal magnets

Tunnel can be used for LEMMA scheme
Conclusion

• Have a tentative plan for the future
 – In case muon collider R&D is proposed by the European Strategy
 – But need people and money
 – Try to obtain network-like activity (via ARIES2)

• Need to develop baseline
 – Energy and luminosity choice
 – For MAP and LEMMA approach important gaps exist
 – Need to bring knowledge to life again
 – And address holes
 – For LEMMA consolidation is attempted

• Need to address neutrino radiation
 – Confirm results from US study
 – Lower radiation at 14 TeV
 – Strong point of the LEMMA scheme

• Need to develop experimental R&D plan
 – Key is likely test facility for muon generation
 – Will depend on progress of baseline design
Reserve
Linear Collider Scaling with Energy

$$L \propto H_D \frac{n_\gamma^{\frac{3}{2}}}{\sqrt{\sigma_z}} \frac{1}{\sqrt{\epsilon_y \beta_y}} \frac{R + 1}{R} \frac{\eta P_{wall}}{mc^2}$$

- Beamstrahlung limited by physics requirements
- Bunch length limited by acceleration and detector background
- Beam quality and focusing design
- RF-to-beam efficiency
- Power consumption

At high energy

$$n_\gamma \propto \left(\frac{\sigma_z}{\gamma}\right)^{\frac{1}{3}} \left(\frac{N}{\sigma_x + \sigma_y}\right)^{\frac{2}{3}}$$

For unchanged technologies:
Luminosity per power remains constant with energy
Provided we can focus the beam accordingly

$$R = \sigma_x / \sigma_y$$
Findings of Muon Collider Working Group

A first, high-level review of the two schemes with proton-based (MAP) and positron-based (LEmma):

Muon-based technology represents a unique opportunity for the future of high energy physics research: the multi-TeV energy domain exploration.

First focus promising positron-based scheme, but identified need for consolidation

No showstopper found for proton scheme, but much more detailed understanding is required to judge performance, cost and power. No CDR exists.

Important progress of the technologies, addressing the feasibility of major technical issues with R&D performed by international collaborations.

In Europe, the reuse of existing facilities and infrastructure for a muon collider is of interest (e.g. LHC).

Documents: see first slide of the reserve
High power target (8 MW vs. 1.6-4 MW or even less required) has been demonstrated

Maximum pulse tested 30×10^{12} protons with 24 GeV
- 9×10^{12} muons (loose 90%)

But radiation issues?

What could be made available at CERN (or elsewhere) as a proton driver for a potential test facility?

Maybe can use solid target
Transverse Cooling Concept

\[
\frac{d\epsilon_\perp}{ds} = -\frac{1}{(v/c)^2} \frac{dE}{ds} \frac{\epsilon_\perp}{E} + \frac{1}{2} \frac{1}{(v/c)^3} \left(\frac{14 \text{ MeV}}{E} \right)^2 \frac{\beta \gamma}{L_R}
\]
Cooling: The Emittance Path

- **For acceleration to multi-TeV collider**
- **For acceleration to Higgs Factory**
- **For acceleration to NuMAX (325MHz injector acceptance 3mm, 24mm)**

Specification

- Initial
- Final

Achieved (simulations)

- Initial (X)
- Initial (Y)
- Pre-merge 6D Cooling (original design)

Front End

- Target
- Phase Rotator
- Exit Front End (15mm, 45mm)

Initial Cooling

- VCC & Hybrid
- HCC

Final Cooling

- Bunch Merge

D. Schulte

Muon Collider Strategy, CERN, Oct. 2019
Cooling and MICE

MICE allows to address 4D cooling with low muon flux rate

\[\frac{d\epsilon_\perp}{ds} = -\frac{1}{(v/c)^2} \frac{dE}{ds} \frac{\epsilon_\perp}{E} + \frac{1}{2} \frac{1}{(v/c)^3} \left(\frac{14 \text{ MeV}}{E} \right)^2 \frac{\beta \gamma}{L_R} \]
The absorber reduces the number of particle with large amplitude

They appear with smaller amplitude

Noticeable reduction of 9% emittance

But still some way to go
• 6D cooling
• Stages
• Small emittances
Other Tests

FNAL
Breakthrough in HTS cables

NHFML
32 T solenoid with low-temperature HTS

MuCool: >50 MV/m in 5 T field

FNAL
12 T/s HTS 0.6 T max

A number of key components has been developed

Mark Palmer
The LEMMA Scheme

Key concept:
Produce muon beam with low emittance using a positron beam
No cooling required

Muon current 10^{11} s^{-1} is 300 times lower compared to $3 \times 10^{13} \text{ s}^{-1}$ for proton driver

Emittance $O(10^{-3})$ smaller than in proton scheme, 40 ns vs. 25 μm

In design of 2018 two important issues were found
• Muon multiple scattering
• Issue with phase space

Attempt to consolidate is ongoing
⇒ Nadia’s talk
Beam induced background studies on detector at $\sqrt{s} = 1.5$ TeV

MARS15 simulation in a range of \pm100 m around the interaction point

750 GeV beam

Particle composition of the beam-induced background as a function of the muon decay distance from the interaction point

Simulated time of arrival (TOF) of the beam background particles to the tracker modules with respect to the expected time (T_0) of a photon emitted from IP

arXiv:1905.03725
Muon Collider Working Group

Jean Pierre Delahaye, CERN, Marcella Diemoz, INFN, Italy,
Ken Long, Imperial College, UK, Bruno Mansoulie, IRFU, France,
Nadia Pastrone, INFN, Italy (chair), Lenny Rivkin, EPFL and PSI, Switzerland,
Daniel Schulte, CERN, Alexander Skrinsky, BINP, Russia, Andrea Wulzer, EPFL and CERN

appointed by CERN Laboratory Directors Group in September 2017
to prepare the Input Document to the European Strategy Update
“Muon Colliders,” arXiv:1901.06150
de facto it is the seed for a renewed international effort

Past experiences and new ideas discussed at the joint ARIES Workshop
July 2-3, 2018
Università di Padova - Orto Botanico
https://indico.cern.ch/event/719240/overview

Preparatory meeting to review progress for the ESPPU Symposium
April 10-11, 2019
CERN – Council Room
https://indico.cern.ch/event/801616
Carlo Rubbia: The experimental realization of the presently described μ+μ- Ring Collider may represent the most attractive addition of the future programs on the Standard Model to further elucidate the physics of the Ho, requiring however a substantial amount of prior R&D developments, which must be experimentally confirmed by the help of the Initial Muon Cooling Experiment(al) program.

Initial Cooling Experiment
Use 100 ns ESS pre-pulse with 3×10^{11} protons
Yields $3 \times 10^7 \mu^-$ and $6 \times 10^7 \mu^+$ around 250 MeV
Linear Collider Scaling with Energy

\[\mathcal{L} \propto H_D \frac{n_\gamma^{\frac{3}{2}}}{\sqrt{\sigma_z}} \frac{1}{\sqrt{\epsilon_y/\beta_y}} \frac{R + 1}{R} \frac{\eta P_{wall}}{mc^2} \]

Beamstrahlung limited by physics requirements

Beam quality and focusing design

RF-to-beam efficiency
Power consumption

At high energy

\[n_\gamma \propto \left(\frac{\sigma_z}{\gamma} \right)^{\frac{1}{3}} \left(\frac{N}{\sigma_x + \sigma_y} \right)^{\frac{2}{3}} \]

For unchanged technologies:
Luminosity per power remains constant with energy
Provided we can focus the beam accordingly

\[R = \sigma_x / \sigma_y \]
Power consumption estimates are based on a table calculated by R. Palmer

- Leaves out a number of components, e.g. magnets
- Quote: “These numbers are preliminary, with large uncertainties”

J.-P. Delahaye added a constant value

Need to have conceptual start-to-end design to estimate power correctly

Efficiency of wall plug to beam is not very different from CLIC
For the arcs (presumably worst point, based on straights)

\[
\frac{D}{\int \mathcal{L}} \propto aE \left(\frac{T}{B} + \frac{L}{0.7\text{ m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta}
\]

\[
= \frac{0.1\text{ mSv}}{0.059ab^{1}}
\]

\(a = 4 \times 10^4 \frac{\text{mSv}}{ab^{1} eV^{2} m}\)

E = 0.85 TeV
MAP-type beam
B = 1 T
L = 0.2 m
d_{equiv} = 23 m
LHC Tunnel

For the straights (worst point)

\[
\frac{D}{\int \mathcal{L}} \propto aE \left(\frac{T}{B} + \frac{L}{0.7\, m} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta}
\]

\[
= \frac{0.1\, mSv}{0.059\, ab^{\, 1}}
\]

\[
a = 4 \times 10^4 \, \frac{mSv}{ab^{\, 1}} \frac{1}{eV^{\, 2}} \frac{1}{m}
\]

E = 0.1 TeV
MAP-type beam
B = 1 T
L = 500 m
d_{\text{equiv}} = 23 m - 5430 m
Muon Collider Luminosity Scaling

\[\frac{D}{\int \mathcal{L}} \propto aE \left(\frac{T}{B} + \frac{L}{0.7 \text{ m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta} \]

How to gain a factor 8 in radiation? Seems hard but not impossible
Muon Collider Luminosity Scaling

\[
\frac{D}{\int L} \propto aE \left(\frac{T}{B} + \frac{L}{0.7 \text{ m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta}
\]

- Higher field in collider ring
- And shorter gaps
- Denser beam
- Deeper tunnel
- Larger energy spread acceptance

How to gain a factor 8 in radiation? Seems hard but not impossible
Muon Collider Luminosity Scaling

\[\frac{D}{\int L} \propto aE \left(\frac{T}{B} + \frac{L}{0.7 \text{ m}} \right) \frac{1}{d} \frac{\epsilon_T \epsilon_L}{N_0} \frac{1}{\sigma_\delta} \]

- Higher field in collider ring
- And shorter gaps
- Larger energy
- Spread acceptance
- Denser beam
- Deeper tunnel
- Source design
- Lattice design work

How to gain a factor 8 in radiation? Seems hard but not impossible
Muon Collider Luminosity Scaling

\[\frac{D}{\int L} \propto aE \left(\frac{T}{B} + \frac{L}{0.7 \text{ m}} \right) \frac{1}{\epsilon_T \epsilon_L} \frac{1}{N_0} \frac{1}{\sigma_\delta} \]

- Higher field in collider ring
- And shorter gaps
- Denser beam
- Deeper tunnel
- Source design
- Magnet design
- Civil engineering
- Lattice design work
- Larger energy spread acceptance
- More efficient physics
- More years of running

How to gain a factor 8 in radiation? Seems hard but not impossible