

The Higgs sector and gravitational waves

Mitsuru Kakizaki (University of Toyama)

March 6, 2020 @ University of Toyama (Online) 2nd Toyama International Symposium on "Physics at the Cosmic Frontier" (PCF2020)

Reference:

- K. Hashino, R. Jinno, MK, S. Kanemura, T. Takahashi and M. Takimoto, Physical Review D99, no. 7, 075011 (2019), arXiv:1809.04994

- 1. Introduction
- 2. Gravitational waves
- 3. Gravitational waves from first order phase transition
- 4. Expected constraints on model parameters
- 5. Summary

D'où venons-nous? Que sommes-nous? Où allons-nous?

i.e., at the most fundamental level

- How did the Universe begin?
- What is the Universe made of?
- What is the fate of the Universe?

The goal of this research is to answer these questions

January 11, 2020 Mitsuru Kakizaki 3

[Paul Gauguin]

How did the Universe begin?

New Physics beyond the Standard Model

Discovery of the 125 GeV Higgs boson h at the CERN LHC

- Spontaneous electroweak symmetry breaking established
- Information on the Higgs sector imperfect

Phenomena beyond the Standard Model

- Baryon asymmetry of the Universe Neutrino oscillations
- Existence of dark matter

What is the Universe made of?

-
- Cosmic inflation

Our Universe (in mathematical language) = Standard Model x General Relativity + New Physics

 $3 = \sqrt{9}$ $8 - 47$ $+\frac{1}{11}\cancel{11} + \frac{1}{11}\cancel{11} + \frac{1}{11}\cancel{$

The Lagrangian of the **Universe encodes the** fate of the Universe (c.f. protein structure encoded by DNA)

January 11, 2020 **Mitsuru Kakizaki dark matter, etc.** 6 • The goal of this research is to reveal unknown terms for new physics (e.g. baryon asymmetry,

Baryon asymmetry and electroweak baryogenesis (EWBG)

• Electroweak phase transition (EWPT) is NOT of 1st order for $m_h = 125 \text{ GeV}$

EWBG is an important physics case relating the Higgs sector to BSM phenomena

Strongly 1 st OPT and Higgs boson couplings

- 1st OPT can be easily realized
- Signatures are testable at colliders
- $m_{\Phi}[\text{GeV}]$ e.g. Two Higgs doublet model (2HDM)
- Condition for strongly 1st OPT: $\varphi_c/T_c \gtrsim 1$
	- Large deviation in the triple Higgs boson coupling $(\Delta\lambda_{hhh}/\lambda_{hhh}^{\rm SM} \geq 10\%)$

EWPT can be tested at future colliders

- High-Luminosity LHC:
	- $[-0.8 < \lambda_{hhh}/\lambda_{hhh}^{\rm SM} < 7.7~(95\%~{\rm CL})$ [ATL-PHYS-PUB-2017-001]
- International Linear Collider (ILC) $(\sqrt{s} = 1 \text{ TeV } L = 4 \text{ ab}^{-1})$ $\Delta\lambda_{hhh} : 10\%$ [Fujii et al., arXiv: 1908.11299]

January 11, 2020 Mitsuru Kakizaki 8 CP phases can generate observable electric dipole moments

Gravitational waves (GWs) as a probe of EWPT

Ground-based interferometers:

- Advanced LIGO, Advanced Virgo, KAGRA, ...
- Main targets: GWs from binary systems, supernovae, ...

New era of GW astronomy

- First direct observation of GWs [LIGO and Virgo (2016)] **- GW150914 from a binary black hole:**
- **- GW170817 from a neutron star merger:** Breakthrough for multi-messenger astronomy (GW + EM)

Future space-based interferometers:

- LISA (2034-), DECIGO, ...
- Sensitive to GWs from the early Universe (Strongly 1st OPT, cosmic inflation, ...)

Synopsis

Contents

- 1. Introduction
- 2. Gravitational waves
- 3. Gravitational waves from first order phase transition
- 4. Expected constraints on model parameters
- 5. Summary

Gravitational waves as a probe of the early Universe

Weak field approximation

• Metric close to flat: $g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x)$, $|h_{\mu\nu}| \ll 1$

Linearlized Einstein equation in vacuum $\Box h_{\mu\nu} = 0$ \longleftarrow Wave equation with $v = c$

Interaction rate of gravitational waves

• Interaction rate: $\Gamma = n \sigma v$, 1

$$
T^3 \overbrace{G_N^2 T^2}^{\rm I} = T^2/M_{\rm Pl}^4
$$

• Expansion rate of the Universe: $H \sim T^2/M_{\rm Pl}$

$$
\blacktriangleright \Gamma/H \sim T^3/M_{\rm Pl}^3 < 1
$$

GWs decouple at temperatures below the Planck scale

Universe earlier than big bang nucleosynthesis can be probed by using GWs

Characteristics of relic gravitational waves

• Homogeneous • Isotropic • Static • Unpolarized

Relic GWs are characterized only by frequency f

Energy density of relic gravitational waves

$$
\rho_{\rm GW}=\frac{1}{32\pi G}\langle \dot{h}_{ij}\dot{h}_{ij}\rangle
$$

• Normalized Energy density per unit logarithmic interval of frequency

$$
\Omega_{\rm GW}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d \ln f}
$$

Critical density: $\rho_c = \frac{3H_0^2}{8\pi G}$

Relic gravitational waves observed today

GWs produced at temperature T_t with abundance $\Omega_{\rm GW}^t$, frequency f_t Adiabatic expansion of the Universe a : scale factor $sa^3 = \text{const.}$ **Energy density and frequency red-shifted:** $\rho_{\rm GW} \propto 1/a^4$ $f \propto 1/a$

GWs observed today

• Relic abundance: $\Omega_{\text{GW}}h^2 \simeq 1.7 \times 10^{-5} \left(\frac{100}{\sigma^t}\right)^{1/3} \Omega_{\text{GW}}^t$

 $f_0 \simeq 1.7 \times 10^{-5} \left(\frac{g_*^t}{100}\right)^{1/6} \left(\frac{T_t}{100 \text{ GeV}}\right) \frac{f_t}{H_t} \text{ Hz}$ Frequency:

e.g., for typical electroweak phase transition

 $T_t \sim 100 \text{ GeV}$ $f_t/H_t \sim 10^2 - 10^4$ $f_0 \sim 10^{-3} - 10^{-1} \text{ Hz}$

Contents

- 1. Introduction
- 2. Gravitational waves
- 3. Gravitational waves from first order phase transition
- 4. Expected constraints on model parameters
- 5. Summary

GWs from 1st OPT

Linearlized Einstein equation for the metric perturbation $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

> 1. Collision of bubble walls 2. Sound wave 3. Plasma turbulence $\Box h_{\mu\nu} \sim T_{\mu\nu}$ Sources of GWs

GW spectrum is derived from finite temperature effective potential V_{eff}

Bubble nucleation rate per unit volume per unit time:

 $\Gamma(t) = \Gamma_0(t) \exp[-S_E(t)]$ $S_E(T) = S_3(T)/T$, $S_3 = \int d^3r \left[\frac{1}{2} (\vec{\nabla}\varphi_b)^2 + V_{\text{eff}}(\varphi_b, T) \right]$

Transition temperature T_*

$$
\left. \frac{\Gamma}{H^4} \right|_{T=T_*} \sim 1 \qquad \qquad \underbrace{S_3(T_*)}_{T_*} = 4 \ln(T_*/H_*) \sim 140
$$

Released false vacuum energy (Latent heat)

 $\epsilon(T) = -V_{\text{eff}}(\varphi_B(T),T) + T \frac{\partial V_{\text{eff}}(\varphi_B(T),T)}{\partial T}$ Normalized parameter: $\alpha = \frac{\epsilon(T_*)}{\rho_*(T_*)}$

Inverse of the duration of phase transition

$$
\beta = -\left. \frac{dS_E}{dt} \right|_{t=t_*} \simeq \left. \frac{1}{\Gamma} \frac{d\Gamma}{dt} \right|_{t=t}
$$

Normalized parameter:

$$
\frac{\beta}{H_*}\left(=\widetilde{\beta}\right)
$$

Wall velocity $|U_{ij}\rangle$

Rough spectrum from the dominant sound wave contribution

- Complicated numerical simulations are necessary
- provided by Caprini et al. _[Caprini et al. (2015)] Our analysis relies on the approximate fitting formula

January 11, 2020 Mitsuru Kakizaki 19

Contents

- 1. Introduction
- 2. Gravitational waves
- 3. Gravitational waves from first order phase transition
- 4. Expected constraints on model parameters
- 5. Summary

Fisher Analysis

January 11, 2020 Mitsuru Kakizaki 21

Constraints on the shape of GW spectrum

Constraints on transition parameters

Constraining parameters

• The GW spectrum is determined by f_{peak} , $\Omega_{\rm peak}$

Our Fisher analysis generically constrains 2 combinations of underlying parameters

Quantities describing transition dynamics

$$
T_*, \quad v_w, \quad \alpha, \quad \frac{\beta}{H_*}
$$

Expected constraints on the transition parameters

- Fiducial values $(\alpha, \beta/H_*, v_w, T_*) = (1, 100, 1, 100 \text{ GeV})$
- 1 σ confidence ellipse in $(\alpha, \beta/H_*)$ for fixed T_* and v_w

Models with $O(N)$ symmetry with and **without Classical Scale Invariance (CSI)**

Typical examples for 1st OPT from thermal loop effects Models with CSI 4.0

LISA

Models can be distinguished, parameters can be narrowed down

Higgs singlet model

Typical example for 1st OPT from tree-level mixing

• Tree-level Higgs potential

 $V_0 = -\mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu_S'}{3} S^3 + \frac{\lambda_S}{4} S^4$ LISA

0.99

0.98

ILC 250GeV

 $2ab^{-1}(1\sigma)$

 \times 0.97

 $\int_{\mathbb{R}^{n}} \mathbb{R} \, \mathrm{d} \mathbb{R} \, \mathrm{d} \mathbb{R} \, \mathrm{d} \mathbb{R}$

0.96

0.95

 0.94

Additional Higgs boson mass: m_H Scaling factor: κ ($\kappa = 1$ in the SM)

• Fiducial parameters

 $(m_H \text{ [GeV]}, \kappa, \mu_{\Phi S} \text{ [GeV]}, v_S \text{ [GeV]}, \mu'_S \text{ [GeV]})$

 $= (166, 0.96, -80, 90, -30)$

 $(\alpha, \beta/H_*, T_* [\text{GeV}]) \simeq (0.085, 420, 93)$

Future colliders

 ILC [Fujii et al. (2017)] \cdot

The synergy between colliders and GW observations can narrow down the allowed parameter space

January 11, 2020 **Mitsuru Kakizaki** Mitsuru Kakizaki **2018**)] 25 [Hashino, Jinno, MK, Kanemura, Takahashi,

 $(m_H$ [GeV], κ , μ _{HS}[GeV], ν _S[GeV], μ _S' [GeV])

 $=(166.4, 0.96, -80, 90, -30)$

 $LISA(1\sigma)$: 1, 3, 10yr

 $\phi_C/T_C \geq 1$

 HC

Fiducial point

excluded

Additional Higgs boson mass [GeV]

160 162 164 166 168 170 172 174

5. Summary

- We have evaluated the expected constraints on the parameters of new physics models with 1st OPT using future space-based GW observations
- January 11, 2020 Mitsuru Kakizaki 26 We have shown that the synergy between future colliders and GW observations can play complementary roles in determining model parameters

Backup slides

 $\label{eq:1.1} \frac{1}{4} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

Synergy

Classification of models of 1st OPT based on experimental data $V_{\text{eff}} = D(T^2 - T_0^2)\varphi^2 - (ET - e)\varphi^3 + \frac{\lambda(T)}{4}\varphi^4$

Non-decoupling loop effects from hypothetical particles

Thermal-loop induced first order phase transition

January 11, 2020 Mitsuru Kakizaki 29 Necessary for successful electroweak baryogenesis

Models with additional singlet scalars (without CSI)

- Idea: [MK, Kanemura, Matsui (2015)]
	- To generally handle strongly 1st OPT via thermal loop, N isosinglet scalars S_i ($i = 1, \cdots, N$) are introduced
	- For simplicity, $O(N)$ symmetry is imposed

Tree-level scalar potential: $V_0(\Phi, \vec{S}) = V_{\text{SM}}(\Phi) + \frac{\mu_S^2}{2} |\vec{S}|^2 + \frac{\lambda_S}{4} |\vec{S}|^4 + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 |\vec{S}|^2$ Singlet scalar boson mass: $m_S^2 = \mu_S^2 + \frac{\lambda_{\Phi S}}{2}v^2$ 600 Triple Higgs boson coupling: 50 $\lambda_{hhh}^{O(N)} = \frac{3m_h^2}{v} \left\{ 1 - \frac{1}{\pi^2} \frac{m_t^4}{v^2 m_h^2} + \frac{N}{12\pi^2} \frac{m_S^4}{v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \right\}$ 40 **Finite temperature effective potential** 300 (high temperature expansion): $V_{\text{eff}}(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$ 200 $\frac{\varphi_c}{T_c} \propto E = \frac{1}{12\pi v^3} \left[6m_W^3 + 3m_Z^3 + Nm_S^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right) \right] \left(1 + \frac{3\mu_S^2}{2m_S^2} \right) \left[100 \right]$ Non decoupling loop effect from additional scalars January 11, 2020 \overline{a} 30 Mitsuru Kakizaki

N

CSI models with additional singlet scalars

Idea [Hashino, Kanemura, Orikasa (2015)]

- Mass parameters are absent in the original Lagrangian due to Classical Scale Invariance (CSI) [Bardeen (1995)]
- EWSB is directly caused by thermal loop effects

Tree-level scalar potential

$$
V_0(\Phi, \vec{S}) = \frac{\lambda}{2} |\Phi|^4 + \frac{\lambda_S}{4} |\vec{S}|^4 + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 |\vec{S}|^2
$$

Effective potential along the flat direction

$$
V_1(\varphi) = \sum_{64\pi^2} \frac{n_i}{64\pi^2} M_i^4(\varphi) \left(\ln \frac{M_i^2(\varphi)}{Q^2} - c_i \right) c_i = 3/2
$$

Singlet scalar boson mass

$$
Nm_S^4=8\pi^2v^2m_h^2-6m_W^4-3m_Z^4+12m_t^4
$$

Triple Higgs boson coupling

$$
\frac{\Delta \lambda_{hhh}}{\lambda_{hhh}^{\text{SM(tree)}}} = \frac{\lambda_{hhh}}{\lambda_{hhh}^{\text{SM(tree)}}} - 1 = \frac{2}{3} \quad \text{independent of } N
$$
\n[Hashino, Kanemura, Orikasa (2015)]\n_{January 11, 2020}

Idea [Hashino, MK, Kanemura, Ko, Matsui (2016)]

- To investigate strongly 1st OPT and Higgs couplings induced through Higgs field mixing (at least 2 classical fields needed)
- For simplicity, we introduce a singlet Higgs field S
- Tree-level Higgs potential

$$
V_0 = -\mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu_S'}{3} S^3 + \frac{\lambda_S}{4} S^4
$$

$$
\langle \Phi \rangle = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \varphi_{\Phi} \end{pmatrix}
$$
: SM Higgs doublet $\langle S \rangle = \varphi_S$: Higgs singlet

Effective potential:

$$
V_{\text{eff},T=0}(\varphi_{\Phi},\varphi_{S}) = V_{0}(\varphi_{\Phi},\varphi_{S}) + \sum_{i} n_{i} \frac{M_{i}^{4}(\varphi_{\Phi},\varphi_{S})}{64\pi^{2}} \left(\ln \frac{M_{i}^{2}(\varphi_{\Phi},\varphi_{S})}{Q^{2}} - c_{i}\right) \begin{array}{c} c_{F} = c_{S} = 5/6\\ c_{V} = 5/6 \end{array}
$$

 $m_h (= 125 \text{ GeV})$: Mass of the discovered Higgs boson

 m_H : Mass of the additional Higgs boson $\qquad \qquad \theta$: Higgs mixing angle

Higgs singlet model (contd.)

Higgs boson couplings to SM particles $\kappa_X = \frac{g_{hXX}}{g_{hXX}}$

 $\kappa = \kappa_V = \kappa_F = \cos \theta$

Triple Higgs boson couplings (effective potential approach)

$$
\Delta\lambda_{hhh} = \frac{\lambda_{hhh}^{\rm HSM} - \lambda_{hhh}^{\rm SM}}{\lambda_{hhh}^{\rm SM}} \qquad \lambda_{hhh}^{\rm SM} = \frac{3m_h^2}{v_{\Phi}} \left[1 + \frac{9m_h^2}{32\pi^2 v_{\Phi}^2} + \sum_{i=W^{\pm},Z,t,b} n_i \frac{m_i^4}{12\pi^2 m_h^2 v_{\Phi}^2} \right]
$$
\n
$$
\lambda_{hhh}^{\rm HSM} = c_{\theta}^3 \left\langle \frac{\partial^3 V_{\text{eff},T=0}}{\partial \varphi_{\Phi}^3} \right\rangle + c_{\theta}^2 s_{\theta} \left\langle \frac{\partial^3 V_{\text{eff},T=0}}{\partial \varphi_{\Phi}^2 \partial \varphi_S} \right\rangle + c_{\theta} s_{\theta}^2 \left\langle \frac{\partial^3 V_{\text{eff},T=0}}{\partial \varphi_{\Phi} \partial \varphi_S^2} \right\rangle + s_{\theta}^3 \left\langle \frac{\partial^3 V_{\text{eff},T=0}}{\partial \varphi_S^3} \right\rangle
$$

Finite temperature effective potential in one direction (high temperature expansion) $\sqrt{2}$

$$
V_{\text{eff}} = D(T^2 - T_0^2)\varphi^2 - (ET - e)\varphi^3 + \frac{\lambda(T)}{4}\varphi^4
$$

\n
$$
\frac{\varphi_c}{T_c} = \frac{2E}{\lambda} (1 - \frac{e\lambda}{ET})
$$
 Effects from the Higgs boson mixing

January 11, 2020 Mitsuru Kakizaki 33 The Higgs boson mixing gives considerable contributions to deviation in the Higgs boson couplings and to phase transition

 $X:SM$ particle

x

New

h.

phys

Direct searches for the additional Higgs boson in the HSM at the LHC

Predicted values of α **and** β

Testability of models with additional singlet scalars with and without CSI

January 11, 2020 Mitsuru Kakizaki 36

Synergy of measurements of various Higgs boson couplings and GWs in the HSM

The synergy between the Higgs boson coupling measurements and GW observations is important for the HSM Higgs potential

January 11, 2020 Mitsuru Kakizaki 37

Efficiency factor

Landau pole in CSI model

• Large scalar couplings at the EW scale

Landau pole near the EW scale

[Hashino, MK, Kanemura, Matsui (2016)]

署

LISA design

[Caprini et al (2015)]

Planed configuration

- 6 links
- 2.5M km length arms
- 4 years (possible extension to 10 years)

[Caprini et al (2019)]

Constraints on the shape of GW spectrum

Model independent analysis:

[Grojean, Servant (2007); Kikuta, Kohri, So (2014), ...]

Higgs potential with higher order operators:

[Delaunay,Grojean, Wells (2008); Huang, Wan, Wang, Cai, Zhang (2016), ...]

Non-decoupling loop effects from hypothetical particles:

• Light stop loop effects in the MSSM: [Apreda, Maggiore, Nicolis, Riotto (2002), ...]

n.b. Light stops are excluded by LHC

[MK, Kanemura, Matsui (2015), Hashino, MK, Kanemura, Matsui (2016), ...] • Additional scalar loop effects: <
Today's topic

Non-thermal effects at the tree level:

- Next-to-MSSM: [Apreda, Maggiore, Nicolis, Riotto (2002), Huber, Konstandin, Nardini, Rues (2015), ...]
- Real singlet extension: [Ashoorioon, Konstandin (2008)....]

Large GW signals compatible with EWBG: [No (2011), ...]

Finding bubble configuration

• Spatial $O(3)$ symmetric bubble action

$$
S_3(T) = \int 4\pi r^2 dr \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V(\phi, T) \right]
$$

Bounce solution that extremizes $S_3(T)$ is obtained by solving

$$
\frac{\mathrm{d}^2 \phi}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}\phi}{\mathrm{d}r} - \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0
$$
 with boundary conditions
$$
\left. \frac{\mathrm{d}\phi}{\mathrm{d}r} \right|_{r=0} = 0, \quad \phi|_{r \to \infty} \to 0
$$

Thin wall approximation (applicable for small energy difference) In general $S_3 = -\frac{4\pi}{3}R^3\Delta V_{\text{eff}} + 4\pi R^2 S_1$ $S_1 = \int_{\phi_F}^{\phi_T} d\phi (2V)^{1/2}$ R : Bubble size Volume energy Surface tension $R = \frac{2S_1}{\Delta V_{\text{eff}}}$ $S_3 = \frac{16\pi S_1^3}{3(\Delta V_{\text{eff}})^2}$

Numerical computation is necessary for finding the solution (e.g. Overshooting-undershooting method)

January 11, 2020 Mitsuru Kakizaki 43

GW spectrum

- Complicated numerical simulations are necessary
- [Caprini et al. (2015)] Approximate fitting formula are available

Collision of walls (Envelope approximation):

$$
\widetilde{\Omega}_{\text{env}} h^2 \simeq 1.67 \times 10^{-5} \times \left(\frac{0.11 v_b^3}{0.42 + v_b^2} \right) \widetilde{\beta}^{-2} \left(\frac{\kappa_{\phi} \alpha}{1 + \alpha} \right)^2 \left(\frac{100}{g_*^t} \right)^{1/3}
$$
\n
$$
\widetilde{f}_{\text{env}} \simeq 1.65 \times 10^{-5} \text{ Hz} \times \left(\frac{0.62}{1.8 - 0.1 v_b + v_b^2} \right) \widetilde{\beta} \left(\frac{T_t}{100 \text{ GeV}} \right)
$$

Sound waves (Compression waves of thermal plasma):

$$
\widetilde{\Omega}_{\rm sw} h^2 \simeq 2.65 \times 10^{-6} v_b \widetilde{\beta}^{-1} \left(\frac{\kappa_v \alpha}{1 + \alpha}\right)^2 \left(\frac{100}{g_*^t}\right)^{1/3} \qquad \tilde{f}_{\rm sw} \simeq 1.9 \times 10^{-5} \text{ Hz} \frac{1}{v_b} \widetilde{\beta} \left(\frac{T_t}{100 \text{ GeV}}\right)
$$

Magnetohydrodynamic (MHD) turbulence:

$$
\widetilde{\Omega}_{\text{turb}}h^{2} \simeq 3.35 \times 10^{-4} v_{b} \widetilde{\beta}^{-1} \left(\frac{\epsilon \kappa_{v} \alpha}{1+\alpha}\right)^{3/2} \left(\frac{100}{g_{*}^{t}}\right)^{1/3} \tilde{f}_{\text{turb}} \simeq 2.7 \times 10^{-5} \text{ Hz} \frac{1}{v_{b}} \widetilde{\beta} \left(\frac{T_{t}}{100 \text{ GeV}}\right)^{1/3}
$$
\n• V_{b} : wall velocity\n• K_{ϕ} , K_{ψ} and $\epsilon = 0.05$: efficiency factors
\n $V_{\text{January 11, 2020}}$

Backup slides – GW experiments

署

AEDGE

 Atomic Experiments for Dark matter and Gravity Exploration [Bertoldi et al., arXiv:1908.00802]

Landscape of relic GWs

Indirect detection of gravitational waves

- Effects of gravitational waves have been observed
- In 1976, Hulse and Taylor discovered the binary pulsar (neutron star) PSR 1913+16
- The orbit is contracting due to the emission of gravitations waves

DECIGO

Dec-hertz Interferometer Gravitational Wave Observatory

[tamago.mtk.nao.ac.jp/decigo]• Space-based Arm: 1,000 km 浮遊鏡 光検出器 光共振器 ドラッグフリー衛星

Observation of pulsars

Pulsar as a GW detector

- Very stable pulse period: Excellent clock e.g. Period of PSR B1937+21 $1.5578064688197945 + 0.0000000000000004$ ms
- GWs between pulsar and Earth **Fluctuation in arrival time**

Constraints in frequency range $f³1$ / T (Observation duration)

[www.skatelescope.org] Square Kilometer Array (SKA)

- Radio telescope
- Site candidates: Africa, Australia
- 2016: Construction Approved 2018-23: SKA1 Construction 2020+: Early Science

Backup slides – High energy experiments

署

Belle II

Run perspectives

[Talk by E. Prencipe at Universal physics in Many-Body Quantum Systems (2019)]

Backup slides – Introduction

署

Connections between elementary particles and the Universe

Greatest puzzles in nature

- What is the Universe made of?
- How did the Universe begin?

Particle physics (High energy physics)

• Studies the properties of elementary particles and their interactions

Cosmology

• Studies the origin, evolution and structure of the Universe

[Sheldon Glashow]

Big bang cosmology connects elementary particles and the early Universe

January 11, 2020 Mitsuru Kakizaki 54

[www2.kek.jp]

Standard Model of particle physics

Established theory describing elementary particles

But, some phenomena demand new physics beyond the SM

January 11, 2020 Mitsuru Kakizaki 55

The role of high energy colliders

 Mysteries in the early Universe demand developments in particle physics

High energy colliders approach the beginning of the Universe

Motivation

Discovery of the 125 GeV Higgs boson h at the CERN LHC

 The Standard Model (SM) has been established as a low-energy effective theory below $O(100)$ GeV

This is not the end of the story

Puzzles in the Higgs sector

- Guiding principle?
- Shape of the Higgs potential (multiplets, symmetries, ...)?
- Dynamics behind the electroweak symmetry breaking (EWSB)?
- Phenomena beyond the SM (BSM)
	- Baryon asymmetry of the Universe (BAU) Cosmic inflation
	- Existence of dark matter
- Neutrino oscillations
- Idea: Higgs sector = Window to New Physics
	- The structure of the Higgs sector is related to BSM models

Information on new physics can be obtained by investigating the properties of the Higgs sector

Gravitational waves

Gravitational waves (GWs)

• Non-uniform motion of a massive object

Ripples of spacetime propagating at the speed of light

c.f. Non-uniform motion of a charged object

Properties of gravitational waves

- Transverse to the direction of propagation
- Spin 2
- 2 polarization modes: Plus mode h_+ & Cross mode h_{\times}

Sources of gravitational waves

Astrophysical origin Cosmic origin

- Binaries (NS, BH, ...)
- Supernovae
- \bullet etc.

• 1st order phase transition

Electromagnetic waves

- Cosmic inflation
- Topological defects