General-relativistic magnetohydrodynamics

Accretion flows onto Black holes and jet launch

Akira MIZUTA (RIKEN)

References AM, Ebisuzaki, Tajima, and Nagataki, MNRAS 479 2534(2018) the case of BH spin a=0.9 AM+ in prep. parameter study in BH spin (a)

2nd Toyama International Symposiumon "Physics at the Cosmic Frontier"@ Toyama Univ.4 March 2020

Astrophysical Jets

What are astrophyscal jets and key questions on them ?

- Jets are collimated outflows powered by
 - ``central object + accretion disk" in different scales of our Universe
- How do the accretion flows overcome gravity by central objects ?
- How do the outflow become well collimated jets ?

	Central object	Bulk velocity	size
Protostellar jets	protostar	~100km/s	100AU~0.3pc
Micro-quasar jets	Black hole/ Neutro star 1-10M _{sun}	0.1-1c	0.1~1pc
Gamma-ray burst jets	Black hole (~ M _{sun})	~c(F~100)	~1pc
Active galactic jets	Supermassive black hole(10 ⁶⁻⁹ M _{sun})	~c(F~10)	рс~Мрс
c=3.e10cm/s (speed of loght), $\Gamma = (1 - v^2/c^2)^{-1/2}$ (Lorentz factor) 1AU=1.4e10cm . 1pc=3.e18cm. M _{sun=} 2.e33g(solar mass)			

Protostellar jets (HH212)

Micro-quasar jets

Gamma-rat burst jets

long(t_ $\gamma > 2$ s)gamma-ray burst

Gamma-ray bursta associated with supernova GRB 980425/SN1998bw(Galama+1998) GRB 030329A /SN2003dh (Hjorth +2003) GRB 060218/SN2006aj (Campana + 2006) GRB 100316D/SN2010bh (Fan+2011) GRB 171205A/SN2017iuk (Wang + 2018)

Active Galactic Nuclei Jet

Hilghlly collimated outflows from center of galaxy – central engine supermassive black hole

accretion disk

- relativistic outflows
 Bulk Lorentz factor : Γ ~ 10
- multiwavelength emission
 radio to high energy γ-rays
- detailed observation near BH (EHT project since 2017)
- strong candidate of ultra high energy cosmic ray accelerator

via Fermi acc. ? (1954) or wake field acc.

(Ebisuzaki & Tajima 2014)

Active Galactic Nuclei Jet

Hilghlly collimated outflows from center of galaxy – central engine supermassive black hole

accretion disk

- relativistic outflows Bulk Lorentz factor : $\Gamma \sim 10$
- multiwavelength emission
 radio to high energy γ-rays
- detailed observation near BH (EHT project since 2017)
- strong candidate of ultra high energy cosmic ray accelerator

via Fermi acc. ? (1954) or wake field acc.

(Ebisuzaki & Tajima 2014)

M87 radio observation Hada +(2011)

Active Galactic Nuclei Jet

Hilghlly collimated outflows from center of galaxy – central engine supermassive black hole

accretion disk

- relativistic outflows Bulk Lorentz factor : $\Gamma \sim 10$
- multiwavelength emission
 radio to high energy γ-rays
- detailed observation near BH (EHT project since 2017)
- strong candidate of ultra high energy cosmic ray accelerator

via Fermi acc. ? (1954) or wake field acc.

(Ebisuzaki & Tajima 2014)

Gas can not accrete onto central object w/o any viscous process

- Central object, such as protostars, neutron stars, and black holes(gravity source) and accretion disk system is common to produce collimated outflows, i.e. jets.
- Problem : How to throw away the angular momentum from the system ?
 Otherwise gas can not easily accrete onto central object because of angular momentum conservation law

 Interactions between planets, comets, and other small objects are negligible

ex) ``Solar system" is very stable for 46 billion years due to less chance to exchange angular momentum between planets and other small objects around the sun.

- Accretion disk is gas object in which gas can easily exchange angular momentum each other
- Angular momentum can be transferred by viscous torques from inner part of the disk to the outer part.
- The key is magnetic field in the accretion disk.

Angular mom. Transfer by B-filed amplification in the disk

Black hole accretion flows and jets

-- Shortest timescale of the system is MRI growth time : $1/\omega \sim 4/3 \Omega_{\kappa}$ -- Repeat cycle is ~10 Ω_{κ} (Shi +2010)

Basic Equations : GRMHD Eqs. GM=c=1, a: dimensionless Kerr spin parameter $\frac{1}{\sqrt{-a}}\partial_{\mu}(\sqrt{-g}\rho u^{\mu}) = 0$ Mass conservation Eq. $\partial_{\mu}(\sqrt{-g}T^{\mu}_{\nu}) = \sqrt{-g}T^{\kappa}_{\lambda}\Gamma^{\lambda}_{\nu\kappa}$ Energy-momentum conservation Eq. $\partial_t(\sqrt{-q}B^i) + \partial_i(\sqrt{-q}(b^i u^j - b^j u^i)) = 0$ Induction Eq. $p = (\gamma - 1)
ho\epsilon$ EOS (y=4/3) Constraint equations. $u_{\mu}b^{\mu} = 0$ Ideal MHD condition $\frac{1}{\sqrt{-g}}\partial_i(\sqrt{-g}B^i) = 0$ No-monopoles constraint $u_{\mu}u^{\mu} = -1$ Normalization of 4-velocity Energy-momentum tensor $T^{\mu\nu} = (\rho h + b^2) u^{\mu} u^{\nu} + (p_{g} + p_{mag}) q^{\mu\nu} - b^{\mu} b^{\nu}$ $p_{\rm mag} = b^{\mu} b_{\mu} / 2 = b^2 / 2$ $b^{\mu} \equiv \epsilon^{\mu\nu\kappa\lambda} u_{\nu} F_{\lambda\kappa}/2 \quad B^{i} = F^{*it}$

GRMHD code (Nagataki 2009,2011, see also Noble 2006)

Kerr-Schild metric (no singular at event horizon) HLL flux, 2nd order in space (van Leer), 2nd or 3rd order in time See also, Gammie +03, Noble + 2006 Flux-interpolated CT method for divergence free

Fisbone-Moncrief (1976) solution – hydrostatic solution of tori around rotating BH (a=0.9, rH~1.44), $l_* \equiv -u^t u_{\phi}$ =const =4.45, r_{in} =6. > r_{isco} With maximum 5% random perturbation in thermal pressure.

Units L: Rg=GM/c² (=Rs/2), T: Rg/c=GM/c³ ~9.0x10¹⁴cm(M_{BH}/6x10⁹M_{sun}) ~3000s (M_{BH}/6x10⁹M_{sun})

Grids to capture MRI fastest growing mode

Wavelength of fastest growing mode in the disk $\lambda_{MRI} = 2\pi \langle C_{az} \rangle / \Omega_{K} (R) \sim 0.022 (R/R_{ISCO})^{1.5}$

Magnetized jet launch

Disk : Fishbone Moncrief solution, spin parameter **a=0.9 (0.7, 0.5, 0.3, 0.1)** spherical coordinate R[0.98 r_H(a):3e4] θ [0: π] ϕ [0:2 π] [NR=124,N θ =252, N ϕ =60] r=exp(n_r), θ : non-niform (concentrate @ equator) d ϕ ~6°: uniform Poloidal B filed, β _min=100

B-filed amplification & mass accretion (a=0.9 case)

Butterfly diagram is common feature of accretion disk $m = 2 \log \frac{1}{2} \log \frac{$

Event horizon / ISO(innermost stable circular orbit)

Kerr Spin parameter (a) dependence

- Longer timescales for B-filed amplification and mass accretion rate for lower spin a case. - The timescales are consistent with orbital pereod @ radius = $r_{ISCO} + \alpha$.

Butterfly diagram & EM jet power

Conclusion

- Jets are produced from central objects and accretion disks in different scales in the Universe.
- 3D general relativistic magnetohydrodynamic simulations are powerful tool to study the physics of accretion flows onto BH and jets launching mechnism.
- Magnetic filefd amplification via Magneto-Rotational Instability (MRI) is important to understand accretion flows because angular momentum is transferred to the outer region and efficient mass accretion is realized.
- low beta disk $\leftarrow \rightarrow$ high beta disk transition is observed. short timevariability not only in the disk but also in jets
- Accretion disk butterfly diagram seems common feature for accretion flows onto any objects.
- For higher BH spin parameter
 - shorter timevariability (MRI growth, repeat cycle)
 - more efficient Poynting jets are observed