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Introduction

MFPADs & PA-MFPADs

« MFPADs
= Molecular-Frame Photoelectron Angular Distributions
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MFPADs & PA-MFPADs

O 1s MFPADs of Oxygen atom

O 1s MFPADs of CO molecule Scattering
by carbon atom
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The MFPADs reflect molecular structure.
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MFPADs & PA-MFPADs

PA-MFPADs

= Polarization-Averaged -
Molecular-Frame Photoelectron Angular Distributions

MFPADs averaged over all the polarization directions
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O 1s PA-MFPADs
of Oxygen atom

Average
over polarization
vector

The PAMFPADSs of single
atom becomes a sphere.

MFPADs
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Only the scattering effect by surrounding atoms is extracted.

= PA-MFPADs
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Experiment

- PA-MFPADs measurement
with 2-color XFEL @European XFEL in 2 years (Prof. Ueda, Tohoku Univ.)

Pump pulse Photoelectron Probe pulse
(XFEL) (XFEL) Photoelectron

/ Auger electron
/he molecule becomes

a di-cation and starts

' D dissociate
w time (~ 10-15sec.)

Delay time: t;

Prediction for experiment




Theory & Calculations

1. Multiple Scattering Theory

Muffin-tin approximation & Full-potential method

2. Dependence of PA-MFPADs on electronic structure

3. Dependence of PA-MFPADs on bondlength




PA-MFPADs calculations based on
multiple-scattering theory with muffin-tin
approximation and full-potential method.
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1. Multiple Scattering Theory

Muffin-tin approximation & Full-potential method
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1. Multiple Scattering Theory

Muffin-tin approximation & Full-potential method

« Computational condition
— Calculation code: FPMS, MsSpec
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C-O bondlength: 1.1283 A
Kinetic energy of photoelectron : 100 eV
Optical potential : Real part of Hedin-Lundqvist potential




1. Multiple Scattering Theory

Muffin-tin approximation & Full-potential method

Calculation results : O1s PA-MFPADs of CO molecule

Muffin-tin (E(TEHE AR

approximation

(BTtEHRER AR
Full-potential (BtE#HER AR
method w

C-O bondlength : 1.1283 A
Kinetic energy of photoelectron : 100 eV
Optical potential : Real part of Hedin-Lundqvist potential

The Muffin-tin approximation doesn’t work well

for the PA-MFPADSs calculation even in high-energy region (~100eV)z10




2. Dependence on electronic structure

The PA-MFPADs calculated with Muffin-tin approximation and
Full-potential method clearly differ from each other.

— Detailed structure of molecular potential is not negligible.

— Charge density and molecular potential are constructed by just
superimposing the potentials of each atoms (non-SCF way).

’

Charge density and molecular potential should be calculated
in SCF with keeping electron-holes.

— These calculation were performed with RASPT2 method by using a
quantum chemistry package “MOLCAS”.




2. Dependence on electronic structure

- Pump-Probe measurement
with 2-color XFEL @European XFEL in 2 years (Prof. Ueda, Tohoku Univ.)

Pump pulse Photoelectron Probe pulse
(XFEL) (XFEL) Photoelectron

/ Auger electron
/he molecule becomes

a di-cation and starts

‘ B dissociate
w time (~10 15sec.)

Delay time: t;




2. Dependence on electronic structure

High-probability electronic states after probe-pulse irradiation (Prof. Yamazaki, Tohoku Univ.)
L. S. Cederbaum and P. Campos, J. Chem. Phys. 95, 6634 (1991).
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calculated with CI method with keeping the electron holes in SCF

Charge densities and molecular potentials are calculated

for these 3 electronic states.




Charge-density distribution

electronic state

1 hole in O (1s) 1 hole in O (1s)
- 1 hole in 40
2 holes in 50 1 hole in 50

Basis set
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2. Dependence on electronic structure

Dependence of basis-set “
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2. Dependence on electronic structure

Dependence of Basis-set
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The shapes of PA-MFPADs does not depend much on the basis set.

P-15




2. Dependence on electronic structure

Dependence on electronic state “
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2. Dependence on electronic structure

Dependence on electronic state
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The shapes of PA-MFPADs depend on the electronic structure.




3. Dependence on bondlength

CO dication O1s PA-MFPADs

C-O bondlength : 1.1283 A ~ 2.0283 A ( 0.1 A step, 10 snapshots )
Kinetic energy of photoelectron: 100 eV
Optical potential : Real part of Hedin-Lundqgvst potential

1 hole in O (1s) , 2 holes in 50, Basis set : 6-31G*
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The PA-MFPADs are sensitive to molecular structure change.




3. Dependence on bondlength
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The forward/backward intensities

oscillate as a function of bondlength R.



3. Dependence on bondlength

- Comparison with single-/double- scattering calculation with MT approximation.
MT & Single-scattering MT & Double-scattering FP & Matrix-inversion
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Double- and higher scattering — Oscillation of forward-scattering intensity

Single- and higher scattering — Oscillation of backward-scattering intensity

They have frequency 2kR same as EXAFS — Useful for experiment analysis P-19




Summary and Perspectives

For PA-MFPADs simulation, muffin-tin approximation doesn’t work well even in
high-energy region (K.E. of photoelectron ~100eV).

PA-MFPADs reflect the difference in electronic states.

— PA-MFPADs simulation should be performed by full-potential method with
molecular potential and charge density calculated in SCF with keeping
electron-holes.

« PA-MFPAD:s is sensitive to molecular structure change.

« Forward-/backward- intensities of PA-MFPADs of CO molecule oscillate as a
function of C-O bondlength R.

« The frequency of the oscillations is 2kR and it come from interference terms.

« For the analysis of experimental results, we will consider the width of nuclear
wave-packets and thermal broadening.

Thank you for your attention!




