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Introduction
MFPADs & PA-MFPADs

• MFPADs
=  Molecular-Frame Photoelectron Angular Distributions
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Introduction
MFPADs & PA-MFPADs
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O 1s MFPADs of CO molecule

O 1s MFPADs of Oxygen atom
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The MFPADs reflect molecular structure.
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Introduction
MFPADs & PA-MFPADs

• PA-MFPADs
= Polarization-Averaged -
Molecular-Frame Photoelectron Angular Distributions

• MFPADs averaged over all the polarization directions
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PA-MFPADs=(Average of MFPADs with x/y/z polarization)
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Introduction
Experiment
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・PA-MFPADs measurement
with 2-color XFEL @European XFEL in 2 years (Prof. Ueda, Tohoku Univ.)

Delay time: t1

time（~10-15 sec.）

Pump pulse
(XFEL)

The molecule becomes 
a di-cation and starts 
dissociate

Probe pulse
(XFEL) PhotoelectronPhotoelectron

Auger electron

C 1s O 1s

Prediction for experiment



Theory & Calculations

1. Multiple Scattering Theory
Muffin-tin approximation & Full-potential method

2. Dependence of PA-MFPADs on electronic structure

3. Dependence of PA-MFPADs on bondlength
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1. Multiple Scattering Theory
Muffin-tin approximation & Full-potential method

• PA-MFPADs calculations based on 
multiple-scattering theory with muffin-tin 
approximation and full-potential method.
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Full-potential method

・Polyhedral cells that 
completely fill the space.

Muffin-tin 
approximation

・Spherical atomic cell 
centered on nucleus and 
other interstitial region. 

・Molecular potential and 
charge density are divided
by cells centered on nucleus.
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• Computational condition
– Calculation code: FPMS, MsSpec

P-09

1. Multiple Scattering Theory
Muffin-tin approximation & Full-potential method

C-O bondlength: 1.1283 Å
Kinetic energy of photoelectron : 100 eV
Optical potential︓Real part of Hedin-Lundqvist potential

z

xMuffin-tin approximation
(MT)

Full-potential method
(FP) (22 Empty Cells)
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x
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The Muffin-tin approximation doesnʼt work well 

for the PA-MFPADs calculation even in high-energy region (~100eV).

1. Multiple Scattering Theory
Muffin-tin approximation & Full-potential method

C-O bondlength : 1.1283 Å
Kinetic energy of photoelectron : 100 eV
Optical potential︓Real part of Hedin-Lundqvist potential

Full-potential
method

Muffin-tin
approximation

断⾯図
(𝜃=0)

Calculation results : O1s PA-MFPADs of CO molecule

（計算結果 省略）

（計算結果 省略）

（計算結果 省略）



2. Dependence on electronic structure 

• The PA-MFPADs calculated with Muffin-tin approximation and 
Full-potential method clearly differ from each other.
– Detailed structure of molecular potential is not negligible.
– Charge density and molecular potential are constructed by just 

superimposing the potentials of each atoms (non–SCF way).
↓

• Charge density and molecular potential should be calculated 
in SCF with keeping electron-holes.
– These calculation were performed with RASPT2 method by using a 

quantum chemistry package “MOLCAS”.
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・Pump-Probe measurement
with 2-color XFEL @European XFEL in 2 years (Prof. Ueda, Tohoku Univ.)

Delay time: t1

time（~10-15 sec.）

Pump pulse
(XFEL)

The molecule becomes 
a di-cation and starts 
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2. Dependence on electronic structure 

Charge densities and molecular potentials are calculated
for these 3 electronic states. 

calculated with CI method with keeping the electron holes in SCF

High-probability electronic states after probe-pulse irradiation
L. S. Cederbaum and P. Campos, J. Chem. Phys. 95, 6634 (1991).
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（Prof. Yamazaki, Tohoku Univ.）
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1 hole in O (1s)
2 holes in 5σ

1 hole in O (1s) 
1 hole in 4σ
1 hole in 5σ

1 hole in O (1s) 
1 hole in 5σ
1 hole in 1π

Basis set

6-31G*
(small)

ANO-RCC-VQZP
(large)

Charge-density distribution

electronic state

（計算結果 省略）
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2. Dependence on electronic structure 
Dependence of basis-set

1 hole in O (1s) , 2 holes in 5σ
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1.1283 Å

（計算結果 省略）
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2. Dependence on electronic structure 

The shapes of PA-MFPADs does not depend much on the basis set.

Dependence of Basis-set

1 hole in O (1s)
2 holes in 5σ

1.1283 Å

（計算結果 省略）
（計算結果 省略）
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2. Dependence on electronic structure 

(Basis set︓ANO-RCC-VQZP (large))

Dependence on electronic state

1.1283 Å

（計算結果 省略）
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2. Dependence on electronic structure 

The shapes of PA-MFPADs depend on the electronic structure.

(Basis set︓ANO-RCC-VQZP)

Dependence on electronic state

1.1283 Å

（計算結果 省略）
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3. Dependence on bondlength

The PA-MFPADs are sensitive to molecular structure change.

CO dication O1s PA-MFPADs
C-O bondlength : 1.1283 Å ~ 2.0283 Å ( 0.1 Å step, 10 snapshots )
Kinetic energy of photoelectron: 100 eV
Optical potential︓Real part of Hedin-Lundqvst potential
1 hole in O (1s) , 2 holes in 5σ, Basis set : 6-31G*

（計算結果 省略）
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3. Dependence on bondlength

θk= π

θk= 0

θk= π
θk= 0

Forward
direction

Backward
direction

The forward/backward intensities 
oscillate as a function of bondlength R.

（計算結果 省略）
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3. Dependence on bondlength
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MT & Single-scattering

C-O bond length R (a.u.)
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Single-scattering
Double-scattering

𝐜𝐨𝐬 𝟐𝐤𝐑 : oscillation term

・Comparison with single-/double- scattering calculation with MT approximation.

Double- and higher scattering – Oscillation of forward-scattering intensity
Single- and higher scattering – Oscillation of  backward-scattering intensity
They have frequency 2kR same as EXAFS → Useful for experiment analysis

（計算結果 省略） （計算結果 省略） （計算結果 省略）



Summary and Perspectives

• For PA-MFPADs simulation, muffin-tin approximation doesnʼt work well even in 
high-energy region (K.E. of photoelectron ~100eV).

• PA-MFPADs reflect the difference in electronic states.

→ PA-MFPADs simulation should be performed by full-potential method with
molecular potential and charge density calculated in SCF with keeping 
electron-holes.

• PA-MFPADs is sensitive to molecular structure change.

• Forward-/backward- intensities of PA-MFPADs of CO molecule oscillate as a 
function of C-O bondlength R. 

• The frequency of the oscillations is 2kR and it come from interference terms.

• For the analysis of experimental results, we will consider the width of nuclear
wave-packets and thermal broadening.
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Thank you for your attention !


