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Intro µH

Searching for New Physics with light antiprotonic atoms

theoretical predictions for p̄ p and p̄ N systems can be almost as
accurate as values of fundamental constants ∼ 10−12 for highly
excited circular states

for lower circular states: the limitation comes from the electric
dipole polarizability of the nucleus

antiprotonic helium atom: p̄ α e: accurate calculations ∼ 10−10

and measurements for n ∼ 38, ASACUSA + V. Korobov

a good agreement leads to constraints on exotic interactions for
distances � 200 fm (the size of the electron vacuum polarization
interaction potential)

similarly the precise spectroscopy of H2, H+
2 gives strong

constraints at a distance of a Bohr radius ∼ 0.5 · 10−10 m
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Searching for New Physics with light antiprotonic atoms

terra incognita: from 10 fm to 200 fm, there are no experiments
which probes these distances between hadrons with a high
precision

precision spectroscopy of p̄ N can probe the long range hadronic
interactions from distances where annihilation is negligible

can we expect anything interesting in this region ?

a recent experiment on forbidden electromagnetic decay:
arxiv:1910.10459 New evidence supporting the existence of the
hypothetic X17 particle, by Krasznahorkay et al. suggests the
existence of a pseudoscalar or a vector boson particle with
M ∼ 17 MeV, what corresponds to ∼ 12 fm distance

The vector boson particle will be visible in spectra of p̄N
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Muonic Hydrogen

muonic hydrogen:     0.8409 ± 0.0004  fm
electronic hydrogen: 0.876   ± 0.008    fm
electron scattering    0.879   ± 0.011    fm

0.84 fm                                      0.88 fm

20x more precise
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2S-2P by E. Hessels, Science 365, 1007 (2019)

the 18 measurements are shown in Table 1 and
minimize the final uncertainty (combined statis-
tical and systematic), subject to the condition that
the total weight for each separation is 25%. The
last row of Table 1 shows our finalmeasured result

f avg0 ¼ 909:8717ð32Þ MHz

Here, the uncertainty of 3.2 kHz comes from a
combination of a 1.4-kHz statistical uncertainty,
a 2.3-kHz uncertainty in the ac Stark shift, a
1.0-kHzuncertainty in the time-dilation correction,
and a 1.5-kHz phase measurement uncertainty.
The contribution from hyperfine structure to
this interval is 147.9581MHz (17), and correcting
for this contribution leads to a Lamb shift of
1057.8298(32) MHz.

Comparison to other work

Ourmeasurement is lower than the measurement
of Lundeen and Pipkin (6)— f L&P0 ½original� ¼
909:887ð9Þ MHz—by 1.5 standard deviations.
However, our recent reanalysis (16) of their work
(using the modeling developed for this work)
led to a small shift and larger uncertainties:
f L&P0 ½reanalyzed� ¼ 909:894ð20Þ MHz, which
agrees with the present work.
A value of the proton radius can be deduced

from the current measurement (8, 17)

rp[this work] = 0.833(10) fm

which is in excellent agreement (Fig. 5) with
the muonic hydrogen Lamb shift value but dis-
agrees with the CODATA 2014 value (7).
Two additional measurements in hydrogen

that have been published within the past year
can also be used to determine the proton radius:
ameasurement of the 2S→4P interval (18) and a
measurement of the 1S→3S interval (19). Both
of these measurements require a precise value
of the Rydberg constant to determine rp. When
combined with an existing very precise mea-
surement of the 1S→2S interval (20), they pre-
dict the values of rp shown in Fig. 5. The values
from (18) and (19) disagree.
A combination of our work and the measure-

ment of the muonic hydrogen Lamb shift (9, 10)
allows for a direct comparison ofmeasurements
of the proton charge radius using the analogous
measurements for the muon-based and electron-
based determinations. Consistent charge radii
are found from the two measurements.
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Fig. 5. Summary of proton radius data.
Shown are values for the proton RMS charge
radius from our measurement, muonic hydro-
gen, CODATA 2014, and the measurements of
Beyer et al. (18) and Fleurbaey et al. (19)
combined with that of Parthey et al. (20). Also
shown in gray is the value from Lundeen and
Pipkin (6, 16).
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1.1-GeV data and event selection. The uncertainty in rp arising from the 
finite Q2 range and the extrapolation to Q2 = 0 was investigated by varying 
the Q2 range of the mock dataset as part of the robustness study of the 
Rational(1, 1) function29. This uncertainty was found to be much smaller 
than the relative statistical uncertainty, 0.8%. The total systematic relative 
uncertainty on rp was found to be 1.4%, and is detailed in Supplementary 
Table 1 and described in the Supplementary Information.

The value of rp obtained using the Rational(1, 1) function is shown in 
Fig. 4, with statistical and systematic uncertainties summed in quadrature. 
Our result, obtained from Q2 down to an unprecedented 2.1 × 10−4 GeV2/c2, 
is about three standard deviations smaller than the previous high-preci-
sion electron scattering measurement5, which was limited to higher Q2 
(>0.004 GeV2/c2). However, our result is consistent with the μH Lamb-shift 
measurements1,7, and also with the recent 2S–4P transition-frequency 
measurement using ordinary H atoms3. Given that the lowest Q2 reached 
in the PRad experiment is an order of magnitude lower than in previous 
e–p experiments, and owing to the careful control of systematic effects, 
our result indicates that the proton radius is smaller than its previously 
accepted value from e–p measurements. Our result does not support any 
fundamental difference between e–p and μ–p interactions and is consistent 
with the updated value announced for the Rydberg constant by CODATA8.

The PRad e–p experiment covers Q2 over two orders of magnitude 
in one setting. The experiment also exploited the simultaneous detec-
tion of e–p and e–e scattering to achieve good control of systematic 
uncertainties, which were, by design, different from previous e–p 
experiments. The extraction of rp using functional forms with vali-
dated robustness is another strength of this result. Our result dem-
onstrates a large discrepancy with contemporary, high-precision e–p 
experiments. The result also implies that there is consistency between 
proton charge radii as obtained from e–p scattering measurements on 
ordinary hydrogen and spectroscopy of muonic hydrogen1,7. The PRad 
experiment demonstrates the clear advantages of the calorimeter-
based method for determining rp from e–p experiments and points to 
further possible improvements in the accuracy of this method. It is also 
consistent with the recently announced shift in the Rydberg constant8, 
which has profound consequences, given that the Rydberg constant is 
one of the most precisely known constants of physics.
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Fig. 4 | The proton charge radius. rp as extracted 
from the PRad data in this work, shown alongside 
other measurements of rp since 2010 and previous 
CODATA recommended values. Our result is 2.7σ 
smaller than the CODATA recommended value for 
e–p experiments6. The orange and blue vertical 
bands show the uncertainty bounds of the μH and 
CODATA values for e–p scattering, respectively.
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Theory of antiprotonic circular levels
(unpublished) PhD dissertation, QED correction to positronium and
antiprotonic atoms, Warsaw (2009)
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Theory of antiprotonic circular levels
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α7 corrections can also be calculated in a straightforward way

in conclusion: one can obtain highly accurate results for circular
states, similarly to p̄He+, but at smaller inter-hadronic distances

can one reach a similar accuracy for measurements ?
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