RUN-2 Physics Activities at CMS/LHC

6th Annual INPP Meeting
15 November 2019

G. Daskalakis
The LHC plan

Run 2
$<\mu> \sim 37$
$L \sim 2 \times 10^{34} / \text{cm}^2/\text{sec}$

Run 3
$<\mu> \sim 55$
$L \sim 2 \times 10^{34} / \text{cm}^2/\text{sec}$

Run 4-5
$<\mu> \sim 140-200$
$L \sim 7.5 \times 10^{34} / \text{cm}^2/\text{sec}$
End of RUN-2

CMS Integrated Luminosity, pp, $\sqrt{s} = 13$ TeV

Data included from 2015-06-03 08:41 to 2018-10-26 08:23 UTC

- LHC Delivered: 163.02 fb$^{-1}$
- CMS Recorded: 150.53 fb$^{-1}$

2018
68.2 fb$^{-1}$

2017
49.8 fb$^{-1}$

2016
40.8 fb$^{-1}$

2015
4.2 fb$^{-1}$

Date

Total Integrated Luminosity (fb$^{-1}$)
931 papers from CMS

931 collider data papers submitted as of 2019-11-12
EXOTICA: \(Z' \to e^+e^- , \mu^+\mu^- \) Searches

The team:
Georgios Daskalakis
IIHE-ULB, RAL,
University of Notre Dame,
Purdue University

final paper

data: 2016-2017-2018
13 TeV, 140 fb\(^{-1}\)

Analysis is finished and approved.

Still few things to be checked before the final publication.

There is a long paper (legacy) to be written.
We might include non-resonance searches.
EXOTICA: $Z' \rightarrow e^+e^-, \mu^+\mu^-$ Searches

Analysis Strategy

- Understand ID efficiency in data and MC from Z peak to high E_T
- Normalize cross sections to Z peak
 All ET independent effects are included
- Develop a simple, ET independent ID
- Maintain a robust high efficient trigger
 Keep low E_T threshold
- Understand mass scale and resolution
- Measure and understand backgrounds
- Set limit on the cross section of various new physics models
- Parameterization of signal and background shapes
EXOTICA: $Z'\rightarrow e^+e^-, \mu^+\mu^-$ Searches

 CMS Preliminary $137 \text{ fb}^{-1} (13 \text{ TeV})$

Data
- $\gamma^*/Z \rightarrow e^+e^-$
- $t\bar{t}, tW, WW, WZ, ZZ, \tau\tau$
- Jets

 CMS Preliminary $140 \text{ fb}^{-1} (13 \text{ TeV})$

Data
- $\gamma^*/Z \rightarrow \mu^+\mu^-$
- $t\bar{t}, tW, WW, WZ, ZZ, \tau\tau$
- Jets
- Total MC (NR)
EXOTICA: $Z'\rightarrow e^+e^-, \mu^+\mu^-$ Searches

Limits on the masses of spin-1 Z'_{SSM} and Z'_Ψ bosons, assuming a signal width of 0.6% (3.0%) of the resonance mass for Z'_Ψ (Z'_{SSM}).

<table>
<thead>
<tr>
<th>Channel</th>
<th>Z'_{SSM}</th>
<th>Z'_Ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>e,e</td>
<td>4.72</td>
<td>4.11</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>4.89</td>
<td>4.29</td>
</tr>
<tr>
<td>$e,e + \mu^+\mu^-$</td>
<td>5.15</td>
<td>4.56</td>
</tr>
</tbody>
</table>
Gauge-Mediated SUSY with 2γ & MET

data: 2016
13 TeV, 36 fb$^{-1}$

The team: A. Kyriakis, I. Topsis-Giotis, G. Paspalaki (student)
Florida State University
University of Notre Dame

Signature: Characteristic events with jets, two photons and large E_T^{miss}

- Final states in pp collisions with high-E_T photons and significant E_T^{miss} emerge naturally from a variety of new physics scenaria, particularly in models of supersymmetry (SUSY) broken via gauge mediation and including a stable, weakly interacting lightest supersymmetric particle (LSP)

- Models with general gauge mediation (GGM) can have a wide range of features, but typically entail a gravitino LSP and a next-to-lightest supersymmetric particle (NLSP) commonly taken to be a neutralino or a stau.
Gauge-Mediated SUSY with 2γ & MET

Background estimation methods:
- based on control samples in data.
Gauge-Mediated SUSY with 2γ & MET

Limits on the gluino/squarks pair production cross section are set. Using NLO + NLL cross section calculations → constrain the masses of gluinos, squarks and neutralinos in the GGM framework.

The team:
Georgios Anagnostou, Georgios Daskalakis, (student?)

Searching simultaneously for both a heavy top partner T' and a new gauge boson W'.

Method ingredients:
Input: MET & visible particles, the topology under investigation
Output: the T' & W' masses

The method is documented in a paper under preparation (G. Anagnostou) using a Delphes production of 200M events.
B2G : T’T’ Searches

2D mass reconstruction - simulation
B2G : T’T’ Searches

Data 2016 – control region

The analysis is almost ready for 2016 dataset.

The search will be extended to 2017/2018 datasets.
HIGGS : ttH (H→bb)

The idea:
Study of the di-leptonic ttH(H→bb) channel reconstructing the Higgs mass and using a **data-driven background** prediction method.

Higgs mass reconstruction: is performed by simultaneously solving analytically the ttH dileptonic decay system while scanning the M_t vs M_W mass plane searching for solutions. (details in G. Anagnostou talk)

Data-driven background: From events with exactly 2 b-tagged jets (ttbar enriched + Higgs contamination small) predict the **shape** and **normalization** of the m_{bb} distribution of events with exactly 3 / 4 b-tagged jets by applying probability weights.

The team: Charis Kleio Koraka (student) Niki Saoulidou (UoA), Georgios Anagnostou, Georgios Daskalakis
HIGGS : ttH (H→bb)

Higgs mass reconstruction : is performed by simultaneously solving analytically the ttH dileptonic decay system while scanning the M_t vs M_W mass plane searching for solutions.

For each event:
- Two out of the four b-jets are assigned to the Higgs boson
- The remaining two b-jets, are assigned to the t/anti-t decays.
- The kinematic mass reconstruction of the tt-bar system is performed
- For each solution, one reconstructs the event and calculates x_1, x_2 (proton momentum fractions) of the ttH system:

\[
x_1 = \frac{E_{t\bar{t}H} + p_{t\bar{t}H_z}}{2} \quad x_2 = \frac{E_{t\bar{t}H} - p_{t\bar{t}H_z}}{2}
\]

The b-jet, lepton, $m_{t_{top}}$ and m_W combination is chosen based on the **highest PDF weight**.

- The weights are evaluated using the LHAPDF-6.1.2 version & the pdf set CT10.
 - It returns the product $xf(x,Q)$, where Q is the energy scale, x is the parton momentum fraction and $f(x,Q)$ is the parton distribution function (here we consider gg interactions).
 - The weight of each solution corresponds to the ratio $w = xf(x,Q)/x$.
- $Q = 235 \ [2(m_{top} + m_{Higgs})/2]$.
HIGGS : ttH (H→bb)

Data-driven background

Motivation
● Predict the main background in a data-driven way

Assumptions
● Probability of tagging a jet independent of the rest of the jets in the event
● The variables used to parameterize tagging efficiency (p_T, $|\eta|$, flavor) are sufficient to describe the b-tagging dependencies.

Implementation
● Jet b-tagging not performed by a direct cut on the discriminant.
● Rather, probability of each jet being b-tagged is estimated using parameterized efficiencies: $\epsilon(p_T, |\eta|, \text{flavor})$

Result
● Predict the shape and normalization of the distribution of interest for a certain b-tag multiplicity from events with lower btag multiplicities, applying probability weights.

From events with exactly 2 b-tagged jets (ttbar enriched + Higgs contamination small) predict the shape and normalization of the m_{bb} distribution of events with exactly 3 / 4 b-tagged jets by applying probability weights.
HIGGS: \(\text{ttH (H} \rightarrow \text{bb)} \)

From the \(N_{b\text{-tags}} = 2 \) distribution can we predict the \textbf{shape} and \textbf{normalization} of the \(N_{b\text{-tags}} = 4 \) distribution?

\textbf{TRF} (Tagging Rate Function) method, used already by D0 & ATLAS.

First we need to estimate the probability of each jet to be \(b \)-tagged. Parameterize the probability as:

\[
\varepsilon(p_T, |\eta|, \text{flavor})
\]

Probability of \(b \)-tagging a true \(b \)jet, \(c \)-jet or light jet parametrized as a function of \(p_T \) and \(\eta \).

Jets are considered \(b \)tagged if \(b\text{tag} > 0.8 \).
HIGGS: \(ttH \ (H\rightarrow bb) \)

For a given requirement of b-tagged jets (\(M \)) in the event, all the possible combinations of labeling \(M \) jets as “tagged” out of the \(N \) jets of the event are considered.

For each combination, a weight is assigned to each jet corresponding to the probability of it being b-tagged using the efficiency \(\varepsilon(p_T, \eta, \text{flavor}) \).

Multiplying all jet weights and adding for all combinations yields the probability for that event to contain the selected number \(M \) of b-tagged jets.

![Diagram showing CMS Simulation results for b-tagged jet multiplicities and comparison between Direct Cut and TRF prediction]

We can observe a perfect closure between the direct cut and the TRF prediction!

Everything works well at simulation level. What about a more realistic scenario?
HIGGS : ttH (H→bb)

Using truth information
- Use all jets and all events to predict the number of N btags & the distribution of interest.
- True b-jets identified using hadron flavor.
- Produce & use tagging probability maps for each hadron flavor.

Using reconstructed information (Both MC & Data)
- Use the 4 leading jets of the events in the control region (exactly 2 btagged jets) to predict the distribution of interest.
- As “true” b-jets are considered the 2 btagged ones in the control region.
- After removing the “true” b-jets per event, produce the approximate c+light jets b-tagging probability map from the remaining jets.

A very rough idea on significances ...

<table>
<thead>
<tr>
<th>(%) systematic error of Bkg prediction</th>
<th>Lumi = 140 fb⁻¹</th>
<th>Lumi = 300 fb⁻¹</th>
<th>Lumi = 3000 fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIG-17-026 Post Fit</td>
<td>1.7</td>
<td>2.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Our approach (2% systematic)</td>
<td>1.2</td>
<td>1.7</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Event yield</th>
<th>TRF prediction</th>
<th>Direct Cut (b-tags = 3)</th>
<th>Ratio (TRF/DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3522</td>
<td>3681</td>
<td>0.97 ± 0.02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event yield</th>
<th>TRF prediction</th>
<th>Direct Cut (b-tags = 4)</th>
<th>Ratio (TRF/DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>133</td>
<td>0.9 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

Work is going on !
An Analysis Note with all the details of our approach is under preparation.
TOP : W helicities from ttbar events

Motivation:

i) The measurement is sensitive to the Wtb vertex structure; new physics from anomalous Wtb couplings

\[F_0 = 0.681 \pm 0.012 \text{ (stat)} \pm 0.023 \text{ (syst)}, \]
\[F_L = 0.323 \pm 0.008 \text{ (stat)} \pm 0.014 \text{ (syst)}, \]
\[F_R = -0.004 \pm 0.005 \text{ (stat)} \pm 0.014 \text{ (syst)} \]

ii) New methodology to improve systematic uncertainties w.r.t. 7 & 8 TeV analyses

The team:
M. Soares, J. Brochero (CIEMAT)
A. Stakia (PhD student),
G. Anagnostou,
G. Daskalakis

Analysis quite advanced. Shown at TOP meetings.

The CMS and ATLAS Collaborations

Data: full RUN-2
13 TeV, 140 fb\(^{-1}\)
TOP : W helicities from ttbar events

\[\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{3}{8} (1 - \cos\theta)^2 F_L + \frac{3}{8} (1 + \cos\theta)^2 F_R + \frac{3}{4} \sin^2 \theta F_0, \quad \theta \equiv \Theta^* \]

\[F_0 = 0.687 \pm 0.005, \quad F_L = 0.311 \pm 0.005, \quad F_R = 0.0017 \pm 0.0001 \]

(Phys. Rev. D 81 (2010) 111503), \(m_t = 172.8 \pm 1.3 \) GeV

\[\cos (\Theta^*) : \]

in the t-quark rest frame, the angle between the down-type fermion momentum in the W rest frame and the W momentum in the top-quark rest frame.

Can we do better by changing the ‘sensitive variable’?

- Based on \(\cos(\Theta^*) \) → Strong discriminant power

- \(\cos(\Theta^*) \) needs the reconstruction of the top process (tt̅ or single top)
- tt̅ kinematic fit introduces a dependency of top mass.

We propose a different approach to extract the W-helicity

1. \(\Delta \phi (\ell, \text{jet}) \)
2. \(M_{\ell b} \)
\[\cos \theta^* = 2 \left(\frac{M_{lb}^2}{m_t^2 - m_W^2} \right) - 1 \]

Non uniform resolution versus \(\cos(\theta^*) \)

35.9 fb\(^{-1}\) (13 TeV)

Data
Top pairs
Single top + ttV
QCD Multijet
W/\(Z^+\)/\(Z^-\)
Diboson
Uncertainty

Lepton & Bjets matched to Gen Level DR<0.01
TOP : W helicities from ttbar events

1. Find optimal variable to extract the W-helicity
 - Discriminant power between F_0, F_L and F_R
 - Good resolution
 - Different shape for backgrounds
2. $\Delta \Phi(\ell, \text{jet})$

1. Selection of the correct lepton-jet couple
 - Avoid any SM prior
 - Should work in tW/t-channel/$t\bar{t}$ system.
2. The solution: BDT

\[|\Delta\phi(\text{lep, jet})| \text{ templates} \]

- $F_0 = 1$
- $F_L = 1$
- $F_R = 1$
TOP : W helicities from ttbar events

- We found a very good variable/configuration to extract the W-helicity without kinematic fits: $\Delta \Phi(\ell, \text{jet})$
- Three different regions have been defined in order to optimize the fit (mainly to constrain syst. unc.)
- Several test of the fit performance done. Results show very good precision so far.
- AN already created for this analysis. We are collecting all the details there.

Ongoing

1. Further BDT optimizations: gain in 5% signal efficiency for the same number of correct lepton-b matching
2. Measurement of top mass dependency on W helicity fractions
3. Theory uncertainties

Starting

1. Data-driven method for QCD background
2. First look to real data
3. Re-processing of our ntuples to the latest 2016 recommendations

... more details in Anna’s presentation ..
Contributions to almost all Physics Groups of CMS

Run-2

13 TeV
140 fb$^{-1}$

Run-3

14 TeV
300 fb$^{-1}$
What next?

Pursuing parallel activities in three areas:
1. harvest of run 2 results
2. preparation for data taking & analysis in Run 3
3. preparation for HL-LHC

- Early analyses w/ full Run 2 data
- Physics planning Run 3
- Full Run 2 analyses for summer / fall ‘19
- Mainly measurements using best possible reco & calib (ultra-legacy)
- Preparation Run 3