

Document scope

- CMS will be almost completely rebuilt for Run 4 (2026+)
- The objective of the "Phase II upgrades" is to maintain current performance for an average pile-up of ~ 200 (currently ~ 50)
- The Phase II upgrades enhance the physics potential for heavy ions

Existing projections mostly focus on the statistical reach of the Run 3+4 data arXiv:1902.10229

Our document rather focuses on the impact of the upgrades, which can be mostly inferred from high PU pp simulations

Heavy ion physics with the Compact Muon Solenoid

M. Nguyen*1, R. Granier de Cassagnac1, F. Arleo1, and É. Chapon2

¹Laboratoire Leprince Ringuet, Palaiseau, France ²CERN, Geneva, Switzerland

Abstract

The capabilities of the CMS experiment for heavy ion physics have been well established over the course of the first two Runs of the LHC (2010 - 2018). Pivotal discoveries in the field emerged from the CMS heavy-ion program, such as the sequential suppression of the Υ states in PbPb collisions, as well as the surprising evidence of collectivity seen in high multiplicity pp collisions. The CMS detector will be dramatically upgraded for the high-luminosity era, which is set to begin around 2025. This document outlines the prospects for future measurements in heavy-ion collisions with the upgraded CMS detector.

The CMS-HI program

Since the start of Run 1, CMS has emphasized studies of:

- High p_T physics, particularly jet quenching
- Quarkonia and electroweak bosons

- Key French contributions
- Flow and correlations, especially in small systems

... leading to some of the most notable results in the field:

Increasingly, emphasis also on other topics

- Open heavy flavor (D and B mesons)
- Forward and UPC physics

The HL-LHC era

^{*}Note that CMS emphasizes triggered data, while ALICE will write all events in Run 3+ However, in 2018 CMS recorded 4B MB events (1/3 of lumi) and will likely continue to do so

Phase II upgrades

Trigger / HLT / DAQ Track info. in L1 L1/HLT rate x7.5 DAQ: 6 → 60 GB/s

New silicon tracker Improved granularity Lighter material budget $|\eta| < 2.4 \rightarrow |\eta| < 4$

New endcap calorimeters (HGCal) Unprecedented granularity

 $|\eta| < 3$

New MIP Timing Detector (MTD) Precision timing

 $|\eta| < 3$

Extended muon coverage $|\eta| < 2.4 \rightarrow |\eta| < 2.8$

Hermetic coverage at forward rapidity

→ high complementarity with ALICE/LHCb

Tracker upgrade

MIP timing detector (MTD)

- Timing resolution of 30 40 ps
 - → comparable PID to STAR/ALICE
 - o Protons identifiable up to p ≈ 5 GeV
 - o Pion and kaons up to p ≈ 2.5 GeV
- Pile-up rejection in high lumi pp
- Triggering on high multiplicity pp collisions in low PU data

Experiment	η coverage	$L \text{ at } \eta = 0 \text{ (m)}$	σ_T (ps)	$L/\sigma_T (\times 100)$
CMS	$ \eta < 3.0$	1.16	30	3.9
ALICE	$ \eta < 0.9$	3.7	56	6.6
STAR	$ \eta < 0.9$	2.2	80	2.2

High granularity calorimeter (HGCal)

- Unprecedented transverse and longitudinal sampling
 - → "particle flow calorimetry"
- Isolated electrons: 95% efficiency for background rejection of 100x at p_T > 20 GeV

- Isolated photons: 90% efficiency for background rejection of 20x
 p_T > 25 GeV
- Comparable jet performance to barrel region:
 e.g., for substructure, soft drop mass resolution of ~ 10%

Muon upgrades

Further redundancy in forward region (1.2 < $|\eta|$ < 2.8) \rightarrow improve matching to tracks from silicon tracker, where the occupancy is largest

(Thoughts on) physics performance

... while we wait for Phase II simulations with heavy ions

Precision quenching & nPDFs

Large acceptance, hermetic detectors essential for precise measurements of:

- Jet quenching in AA with γ+jet and Z+jet balancing
 to fully constrain entire energy of the recoiling jet
- nPDFs with dijets and with weak bosons
 - → to probe the forward region, which is most sensitive to nuclear effects

Phase II features full particle flow (tracker+HGCal+muon) to $\eta \approx 3$ Current detector goes to $\eta \approx 2.4$, but often limited by poor endcap performance

Flavor dependence of jet quenching

Quark vs gluon jets

Large η R_{AA} at high p_T sensitive to changing q:g

Direct flavor tagging

b-dijet p_T imbalance would benefit from b-tagging to $|\eta| = 3$

Open heavy flavor

 $\Lambda_c \rightarrow \pi + K + p$ is the PID physics case par excellence

Heavy quark dynamics via elliptic flow

Hadronization by recombination from baryon-to-meson ratio

+ Combining w/ other experiments, can measure total charm x-section, e.g., for onia dissociation studies

Light nuclei & hyper-nuclei is another interesting PID application

Quarkonia dissociation

Tracker+muon upgrades will improve triggering + reconstruction efficiency

50% gain in mass resolution

- → Observe the Y(3s) (or place more stringent limits)
- Improve significance of other low S/B peaks: ψ(2s), X(3872), etc.

B₀/B_s separation

Separation of the Y family

BSM in heavy ions

One example:

γγ from UPCs provides an exclusion limit on axion-like particles (ALPs)

Rate for UPCs of heavy ions ~ Z⁴

However, factoring in beam intensity, light-ion collisions become competitive

		¹⁶ ₈ O	$^{40}_{18}{ m Ar}$	$^{40}_{20}{ m Ca}$	$^{78}_{36}\mathrm{Kr}$	$^{129}_{54}{ m Xe}$	$^{208}_{82}{\rm Pb}$
γ	$[10^3]$	3.76	3.39	3.76	3.47	3.15	2.96
$\sqrt{s_{ m NN}}$	[TeV]	7	6.3	7	6.46	5.86	5.52
$\sigma_{ m had}$	[b]	1.41	2.6	2.6	4.06	5.67	7.8
N_b	$[10^9]$	6.24	1.85	1.58	0.653	0.356	0.19
ϵ_n	$[\mu\mathrm{m}]$	2	1.8	2	1.85	1.67	1.58
Z^4	$[10^6]$	$4.1 \cdot 10^{-3}$	0.01	0.16	1.7	8.5	45
$\widehat{\mathcal{L}}_{ ext{AA}} \ \widehat{\mathcal{L}}_{ ext{NN}}$	$[10^{30}\mathrm{cm^{-2}s^{-1}}]$	14.6	1.29	0.938	0.161	0.0476	0.0136
$\widehat{\mathcal{L}}_{ ext{NN}}$	$[10^{33}\mathrm{cm^{-2}s^{-1}}]$	3.75	2.06	1.5	0.979	0.793	0.588
$\langle \mathcal{L}_{\mathrm{AA}} angle$	$[10^{27}\mathrm{cm^{-2}s^{-1}}]$	8990	834	617	94.6	22.3	3.8
$\langle \mathcal{L}_{ ext{NN}} angle$	$[10^{33}\mathrm{cm^{-2}s^{-1}}]$	2.3	1.33	0.987	0.576	0.371	0.164
$\int_{\mathrm{month}} \mathcal{L}_{\mathrm{AA}} \mathrm{d}t$	$[\mathrm{nb}^{-1}]$	$1.17\cdot 10^4$	1080	799	123	28.9	4.92
$\int_{\mathrm{month}}^{\mathrm{month}} \mathcal{L}_{\mathrm{NN}} \mathrm{d}t$	$[fb^{-1}]$	2.98	1.73	1.28	0.746	0.480	0.210

For searches of long-lived particles (LLP) light ions are even more advantageous

Contribution submitted to the update to the European Particle Physics Strategy

arXiv:1812.07688

The message

- CMS has produced some of the most notable heavy-ion results in Runs 1 & 2 of the LHC
- There remain interesting measurements to do with the larger luminosities we'll see in Runs 3+
- The Phase II upgrades enhance the capabilities for heavy-ion physics with the CMS detector
 - o Large acceptance, full particle flow to $|\eta| \approx 3$ with
 - Lighter, more granular tracker
 - A state-of-the-art super-granular endcap calorimeter
 - Extended muon coverage
 - New PID capabilities with the MTD detector