Prospectives for heavy-ion physics at LHCb in LHC Run 3-Run 4

Benjamin Audurier*, Laboratoire Leprince-Ringuet

Prospectives QGP France - Orsay - 11 Dec. 2019
The LHCb detector

- Track reconstruction **down to** $p_T = 0$
- Excellent p_T and mass resolution.
- Excellent particle identification.
- Precision vertex reconstruction.

LHCb: single arm spectrometer **fully instrumented** in pseudo-rapidity range $2 < \eta < 5$
The LHCb detector

Can operate both in pp/pPb/PbPb and fixed-target!

Fixed-target mode: unique at LHC!
- Injecting gas in the LHCb VErtex LOcator (VELO) tank.
- Noble gas only: He, Ne, Ar
- Gas pressure: 10^{-7} to 10^{-6} mbar.
List of publications

Published papers

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DOCUMENT NUMBER</th>
<th>JOURNAL</th>
<th>SUBMITTED ON</th>
<th>CITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt Λ_c^+ production in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV</td>
<td>PAPER-2018-021 arXiv:1809.01404 [PDF]</td>
<td>JHEP 02 (2019) 102</td>
<td>05 Sep 2018</td>
<td>23 [plot]</td>
</tr>
</tbody>
</table>

Conference notes

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DOCUMENT NUMBER</th>
<th>SUBMITTED ON</th>
<th>CITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity-dependent modification of p_T ($\psi(2S)$) and $\eta_c(1S)$ production in pp collisions at $\sqrt{s} = 8$ TeV</td>
<td>CONF-2019-005</td>
<td>14 Nov 2019</td>
<td></td>
</tr>
<tr>
<td>Study of prompt D^0 meson production in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV at LHCb</td>
<td>CONF-2019-004</td>
<td>12 Nov 2019</td>
<td></td>
</tr>
<tr>
<td>Measurement of Z production cross-sections in proton-lead collisions at $\sqrt{s_{NN}} = 8.16$ TeV</td>
<td>CONF-2019-003</td>
<td>12 Nov 2019</td>
<td></td>
</tr>
<tr>
<td>LHCb projections for proton-lead collisions during LHC Runs 3 and 4</td>
<td>CONF-2018-005</td>
<td>22 Nov 2018</td>
<td>1 [plot]</td>
</tr>
<tr>
<td>Study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{NN}} = 5$ TeV with the LHCb experiment</td>
<td>CONF-2018-003</td>
<td>25 May 2018</td>
<td>16 [plot]</td>
</tr>
<tr>
<td>Prompt Λ_c^+ production in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV</td>
<td>CONF-2017-005</td>
<td>01 Sep 2017</td>
<td>7 [plot]</td>
</tr>
<tr>
<td>LHCb dimuon and charm mass distributions</td>
<td>CONF-2016-005</td>
<td>19 Jul 2016</td>
<td>2 [plot]</td>
</tr>
<tr>
<td>Reference pp cross-sections for $Y(1S)$ studies in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV and comparisons between ALICE and LHCb results</td>
<td>CONF-2014-003</td>
<td>08 Aug 2014</td>
<td>5 [plot]</td>
</tr>
<tr>
<td>Reference pp cross-sections for J/ψ studies in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV and comparisons between ALICE and LHCb results</td>
<td>CONF-2013-013</td>
<td>22 Dec 2013</td>
<td>20 [plot]</td>
</tr>
<tr>
<td>First analysis of the pPb pilot run data with LHCb</td>
<td>CONF-2012-034</td>
<td>03 Dec 2012</td>
<td>8 [plot]</td>
</tr>
</tbody>
</table>

- 12 papers
- 10 notes
- Link to all documents
Open and hidden charm production in pPb collisions

❖ Preliminary results for D^0 cross-section in pPb/Pbp collisions at $\sqrt{s_{NN}} = 8$ TeV up to $p_T = 16$ GeV/c.

❖ Improved statistics by factor 20 compared to previous LHCb results.

❖ Tension between data and nPDFs predictions. Additional effects required.

Benjamin Audurier - benjamin.audurier@cern.ch
Highlights of ongoing analysis ...

❖ χ_{c1} and χ_{c2} peaks observed in pPb/Pbp collisions with converted and non-converted photons.

Analysis ongoing, stay tuned!
Highlights of ongoing analysis ...

Compact tetraquark/pentaquark

Diquark-diquark
PRD 71, 014028 (2005)
PLB 662 424 (2008)

Hadronic Molecules
PRD 77 014029 (2008)
PRD 100 0115029(R) (2019)

Hadrocharmonium/adjoint charmonium
PLB 666 344 (2008)
PLB 671 82 (2009)
X(3872) : exotic state still not understood.

- Tetraquark / hadronic molecule / something else?
Highlights of ongoing analysis ...

- X(3872) : exotic state still not understood.
 - Tetraquark / hadronic molecule / something else ?
- \(X(3872) / \psi(2S)\) ratio versus \(N_{\text{tracks}}\) measured in pp collisions at \(\sqrt{s} = 8\) TeV.
 - No significant variation is observed for the non-prompt component.
 - Hint of a relative suppression with event activity for prompt component.

\[\begin{align*}
\text{LHCb preliminary pp } \sqrt{s} &= 8 \text{ TeV} \\
\end{align*} \]
Highlights of ongoing analysis …

❖ X(3872) : exotic state still not understood.
 - Tetraquark / hadronic molecule / something else ?

❖ X(3872) /ψ(2S) ratio versus N_{tracks} measured in pp collisions at √s = 8 TeV.
 - No significant variation is observed for the non-prompt component.
 - Hint of a relative suppression with event activity for prompt component.

❖ Baseline for a future pPb analysis !
LHCb physics program

- Large variety of samples to study!
- **Two new samples**: PbNe at $\sqrt{s_{NN}} = 68.6$ GeV and PbPb at $\sqrt{s_{NN}} = 5.02$ TeV.

~ 20 times 2015 luminosity
Status in nucleus-nucleus collisions
Studies in PbPb limited to 60% less central collisions.
Status in nucleus-nucleus collisions

Studies in PbPb limited to 60% less central collisions.

LHCb preliminary \(\sqrt{s_{NN}} = 5 \text{ TeV} \)

PbPb \(60\% < \text{centrality} < 90\% \)
\(p_T^{\text{jet}} < 15 \text{ GeV/c} \)
\(2.0 < y_{\text{jet}} < 4.5 \)

LHCb preliminary \(\sqrt{s_{NN}} = 5 \text{ TeV} \)

\(\Lambda_c \text{ signal} \approx 600 \Lambda_c \text{ background} \)

\(\approx 15k J/\psi \)

2018 data

Benjamin Audurier - benjamin.audurier@cern.ch
Status in nucleus-nucleus collisions

Studies in PbPb limited to 60% less central collisions.

Analysis ongoing, stay tuned!

~15k J/ψ

~600 Λ_c

~700 J/ψ
The future: Precision era

Upgrade 1a
LS2
Run 3

<table>
<thead>
<tr>
<th>Year</th>
<th>Systems, $\sqrt{s_{NN}}$</th>
<th>Time</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>3 weeks</td>
<td>3.9 pb^{-1}</td>
</tr>
<tr>
<td></td>
<td>O–O, p–O</td>
<td>1 week</td>
<td>250 μb^{-1} and 200 μb^{-1}</td>
</tr>
<tr>
<td>2023</td>
<td>p–Pb 8.8 TeV, pp 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few days</td>
<td>1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)</td>
</tr>
</tbody>
</table>

Upgrade 1b
LS3
Run 4

<table>
<thead>
<tr>
<th>Year</th>
<th>Systems, $\sqrt{s_{NN}}$</th>
<th>Time</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>5 weeks</td>
<td>3.8 nb^{-1}</td>
</tr>
<tr>
<td></td>
<td>O–O, p–O</td>
<td>1 week</td>
<td>300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)</td>
</tr>
<tr>
<td>2028</td>
<td>p–Pb 8.8 TeV, pp 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few days</td>
<td>1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)</td>
</tr>
</tbody>
</table>

Upgrade 2
LS4

<table>
<thead>
<tr>
<th>Year</th>
<th>Systems, $\sqrt{s_{NN}}$</th>
<th>Time</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2029</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>4 weeks</td>
<td>3 nb^{-1}</td>
</tr>
</tbody>
</table>

Run-5
Intermediate AA pp reference
11 weeks
1 week
e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)
LHCb is well placed for a **decisive contribution** to Heavy-ion Physics in Run 3 and Run 4.

The future: Precision era

<table>
<thead>
<tr>
<th>Upgrade</th>
<th>LS</th>
<th>Year</th>
<th>Systems, $\sqrt{s_{NN}}$</th>
<th>Time</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>LS2</td>
<td>2021</td>
<td>Pb–Pb 5.5 TeV</td>
<td>3 weeks</td>
<td>2.3 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pp 5.5 TeV</td>
<td>1 week</td>
<td>3 pb$^{-1}$ (ALICE), 300 pb$^{-1}$ (ATLAS, CMS), 25 pb$^{-1}$ (LHCb)</td>
</tr>
<tr>
<td>1b</td>
<td>LS3</td>
<td>2022</td>
<td>Pb–Pb 5.5 TeV</td>
<td>5 weeks</td>
<td>3.9 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O–O, p–O</td>
<td>1 week</td>
<td>500 μb$^{-1}$ and 200 μb$^{-1}$</td>
</tr>
<tr>
<td>2</td>
<td>LS4</td>
<td>2023</td>
<td>p–Pb 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb$^{-1}$ (ATLAS, CMS), 0.3 pb$^{-1}$ (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pp 8.8 TeV</td>
<td>few days</td>
<td>1.5 pb$^{-1}$ (ALICE), 100 pb$^{-1}$ (ATLAS, CMS, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2027</td>
<td>Pb–Pb 5.5 TeV</td>
<td>5 weeks</td>
<td>3.8 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pp 5.5 TeV</td>
<td>1 week</td>
<td>3 pb$^{-1}$ (ALICE), 300 pb$^{-1}$ (ATLAS, CMS), 25 pb$^{-1}$ (LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2028</td>
<td>p–Pb 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb$^{-1}$ (ATLAS, CMS), 0.3 pb$^{-1}$ (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pp 8.8 TeV</td>
<td>few days</td>
<td>1.5 pb$^{-1}$ (ALICE), 100 pb$^{-1}$ (ATLAS, CMS, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2029</td>
<td>Pb–Pb 5.5 TeV</td>
<td>4 weeks</td>
<td>3 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intermediate AA pp reference</td>
<td>11 weeks</td>
<td>e.g. Ar–Ar 3–9 pb$^{-1}$ (optimal species to be defined)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 week</td>
<td></td>
</tr>
</tbody>
</table>
The future : Precision era

LHCb is well placed for a decisive contribution to Heavy-ion Physics in Run 3 and Run 4

- **Best placed for pp and pPb collisions at forward rapidity down to low-p_T**
 - In pPb: $L_{pPb} \sim 30 \text{ nb}^{-1}$ in Run 2 ($\sim 1M J/\psi \rightarrow L_{pPb} \sim 300 \text{ nb}^{-1}$ in Run 3 and $\sim 300 \text{ nb}^{-1}$ Run 4
- **Well placed** (less limited) in PbPb collisions at forward
 - See next slides.
- **Full physics program in fixed-target.**
Run 3 prospects for heavy-ion physics with LHCb

EPPS16 nPDF prediction at NLO

- **Drell-Yan production in pPb collisions.**
 - Forward rapidity: access shadowing region.
 - Backward rapidity: access to EMC effect.

- Other studies in this document:
 - D_0-\overline{D}_0 correlations.
 - B$^+$ meson productions.

- Projections show valuable inputs for nPDF fit with limited data taking periods.

Luminosity:
- pPb: 500 nb$^{-1}$ (4 weeks)
- pp: 104 pb$^{-1}$ (much shorter time)
LHCb Upgrade 1a
LHCb detector: season 3 (2021)

- Upgrade based on pp collision requirements:
 - Collision rate at 40 MHz.
 - Pile-up factor $\mu \approx 5$

- Replace the entire tracking system.

- Full software trigger.
 - Remove L0 triggers.
 - Read out the full detector at 40 MHz.

New Tracking system:
- Silicon upstream detector (UT)
- Scintillating tracking fibre (SciFi)

New pixel VELO

New RICH optics and photodetectors

New electronics for muon and calorimeter systems
Tracking system: Scintillating fibre tracker (SciFi)

- ~10000 km of scintillating fibres arranged in 6 layers with silicon photo-multipliers (SiPM) readout.
- 3 stations.
- 4 detection layers per station arranges in x-u-v-x configuration per stations.
- 10 modules of 2x4 mats.
Run 3 prospects for heavy-ion physics with LHCb
Run 3 prospects for heavy-ion physics with LHCb
Run 3 prospects for heavy-ion physics with LHCb

- **No significant saturation** of the new LHCb detectors **up to 30%!**
- Two proposals for a new tracker (see next slides):
 - In 2024 → reach event more central collisions!
 - In 2030 → no more limitations!
SMOG 2 (TDR): Standalone gas storage cell covering $z \in [-500;-300]$ mm:

- Up to x100 higher gas density with same gas flow of current SMOG.
- Gas feed system measures the gas density with few % accuracy.
- Possibility to run in parallel of pp collisions and inject non noble Gaz.

Installation due in December 2019, to be operational from the start of LHC Run 3.

<table>
<thead>
<tr>
<th>Int. Lumi.</th>
<th>80 pb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sys.error of J/Ψ xsection</td>
<td>~3%</td>
</tr>
<tr>
<td>J/Ψ yield</td>
<td>28 M</td>
</tr>
<tr>
<td>D^0 yield</td>
<td>280 M</td>
</tr>
<tr>
<td>Λ_c yield</td>
<td>2.8 M</td>
</tr>
<tr>
<td>Ψ' yield</td>
<td>280 k</td>
</tr>
<tr>
<td>$Y(1S)$ yield</td>
<td>24 k</td>
</tr>
<tr>
<td>$DY \mu^+\mu^-$ yield</td>
<td>24 k</td>
</tr>
</tbody>
</table>
Run 3 prospects for SMOG2 with LHCb
Run 3 prospects for SMOG2 with LHCb

Rapidity scan
Run 3 prospects for SMOG2 with LHCb

Rapidity scan at 72 GeV with FT@LHCb can complement the RHIC beam energy scan.

Benjamin Audurier - benjamin.audurier@cern.ch
Run 3 prospects for SMOG2 with LHCb

Rapidity scan

Deep in the hadronic structure

❖ Rapidity scan at 72 GeV with FT@LHCb can complement the RHIC beam energy scan.

Benjamin Audurier - benjamin.audurier@cern.ch
Run 3 prospects for SMOG2 with LHCb

Rapidity scan

- Rapidity scan at 72 GeV with FT@LHCb can complement the RHIC beam energy scan.

Deep in the hadronic structure

One of the objectives: 3D pictures in impact parameter space.
Run 3 prospects for SMOG2 with LHCb

Rapidity scan

- Rapidity scan at 72 GeV with FT@LHCb can complement the RHIC beam energy scan.

Deep in the hadronic structure

- SMOG2@LHCb could probe nuclear PDFs, TMDs, GPDs at large Bjorken-x.

One of the objectives: 3D pictures in impact parameter space.
LHCb Upgrade 1b and 2

Upgrade I:
- $2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- Pile-up = 5

Upgrade II:
- $1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Pile-up = 42
Phase II in a nutshell

Sub detectors considering timing:
- Before the magnet:
 - VELO, RICH1
- After the magnet:
 - TORCH, RICH2, ECAL
Magnet Tracking Station

- Proposal for tracking station inside the magnet.
 - Triangular Extruded Scintillating Bars
 - Increase coverage of low-p_T tracks.
 - Physics motivations: access to converted photons.
- Proposing the installation of a small prototype inside the magnet during LS3.

Extended acceptance
Extended coverage
MIGHTY Tracker

- MIGHTY tracker: biggest silicon tracker built by LHCb.
 - Upgrade 1b: Inner Tracker + Scifi.
 - DMAPs technology for silicon sensors.
 - Upgrade II: New mighty silicon tracker covering larger area.
 - Rebuild of SciFi + reuse IT.
- Hybrid technology detector, many challenges!
- First estimations show no limitation in centrality reach with the complete MIGHTY.
MIGHTY Tracker

- MIGHTY tracker: biggest silicon tracker built by LHCb.
 - Upgrade 1b: Inner Tracker + Scifi.
 - DMAPs technology for silicon sensors.
 - Upgrade II: New mighty silicon tracker covering larger area.
 - Rebuild of SciFi + reuse IT.
- Hybrid technology detector, many challenges!
- First estimations show no limitation in centrality reach with the complete MIGHTY.
MIGHTYY Tracker

- MIGHTY tracker: biggest silicon tracker built by LHCb.
 - Upgrade 1b: Inner Tracker + Scifi.
 - DMAPs technology for silicon sensors.
 - Upgrade II: New mighty silicon tracker covering larger area.
 - Rebuild of SciFi + reuse IT.
- Hybrid technology detector, many challenges!
- First estimations show no limitation in centrality reach with the complete MIGHTY.
Conclusions
Conclusions

- **LHCb has greatly contribute to heavy-ion physics.**
 - Precise measurements in the **heavy-flavour sector** in pPb and fixed-target.
 - Limitations of the current detector to the 70% most peripheral PbPb collisions.
 - No limitation in **Pb-SMOG** collisions.
Conclusions

❖ **LHCb has greatly contribute to heavy-ion physics.**
 - Precise measurements in the heavy-flavour sector in pPb and fixed-target.
 - Limitations of the current detector to the 70% most peripheral PbPb collisions.
 - No limitation in Pb-SMOG collisions.

❖ **LHCb physics program is expanding.**
 - Many ongoing analysis in pPb collisions.
 - Two new datasets to explore: PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.
Conclusions

❖ **LHCb has greatly contribute to heavy-ion physics.**
 - **Precise measurements** in the **heavy-flavour sector** in pPb and fixed-target.
 - **Limitations** of the current detector to the 70% most peripheral PbPb collisions.
 - **No limitation in Pb-SMOG** collisions.

❖ **LHCb physics program is expanding.**
 - **Many ongoing analysis** in pPb collisions.
 - **Two new datasets to explore** : PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.

❖ **LHCb’s future is bright and full of opportunities!**
 - **New detector** with **new tracking/PID system** driven by pp physics.
 - **Improved fixed-target program with SMOG2.**
 - **Better performances expected** for Run 3 in high-multiplicity collisions.
Conclusions

- **LHCb has greatly contribute to heavy-ion physics.**
 - Precise measurements in the heavy-flavour sector in pPb and fixed-target.
 - Limitations of the current detector to the 70% most peripheral PbPb collisions.
 - No limitation in Pb-SMOG collisions.

- **LHCb physics program is expanding.**
 - Many ongoing analysis in pPb collisions.
 - Two new datasets to explore: PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.

- **LHCb’s future is bright and full of opportunities!**
 - New detector with new tracking/PID system driven by pp physics.
 - Improved fixed-target program with SMOG2.
 - Better performances expected for Run 3 in high-multiplicity collisions.

Extended capabilities of the detector = expansion of the physics program!
Back-up
Open and hidden beauty production in pPb collisions

- Relative production of upsilon states to test cold (hot ?) nuclear matter effects in pPb collisions.
- Relative $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$ suppression measured in pPb and PbP at $\sqrt{s_{NN}} = 8$ TeV down to zero p_T.
- Good agreement between data and predictions when including co-movers effects.
- Beauty mesons and baryon measured in pPb/Pbp collisions at $\sqrt{s_{NN}} = 8$ TeV.
- Extensive studies show good agreement between data and model predictions.
Fixed-target results

Antiproton in pHe at $\sqrt{s_{NN}} = 110$ GeV

- Antiproton cross-sections in pHe: key to constrain dark matter search in cosmic flux.
 - Data constrain extrapolations from pp to pHe cross-sections.
 - Data constrain empirical parameterization for scaling violation of cross-sections.

Charm in pHe at $\sqrt{s_{NN}} = 86.6$ GeV

- Open-charm production in fixed-target LHCb acceptance: access to **anti-shadowing** and **intrinsic charm** content in the nucleons.
- **Precise** J/ψ and D^0 measurements in pHe.
- **Good agreement** between data and theory with **no strong intrinsic charm** contribution observed.

Benjamin Audurier - benjamin.audurier@cern.ch
Tracking system: Vertex Locator (VELO)

- Silicon pixel detector, 41 M 55 x 55 μm2 pixels.
- Closest pixels at 5.1 mm from the beam line.
- Aluminium foil to protect the Velo without interfering with the beam.
- Sensors to be kept $<-20^\circ$C
- **Total data rate**: 2.8 Tb/s
Tracking in LHCb

- Many types of tracks in LHCb, the most important ones are
 - Long tracks.
 - Downstream tracks

- Tracking steps:
 - Finding a track: Forward Tracking algorithm.
 - Combine VELO seeds with hits in the T-stations
 - Match VELO tracks and seeds from T-stations
 - Fitting a track: Kalman filter.
TORCH is a large area time of flight detector that is designed to provide PID in the GeV/c momentum range

- Considered for use in Upgrade Ib.
- Exploit prompt production of Cherenkov light in a quartz radiator plate to provide a fast timing signal.
- Aim for a resolution of 10-15 ps per track
- A large-scale prototype has been developed.
- Test-beam ongoing
- Good separation between between $\pi/K/p$ is possible in 2-10 GeV/c range.
Upgrade II VELO faces significant mechanical challenges

- huge impact on the design and R&D.

Track timing will be crucial

- PV timing and associations, displaced track trigger etc.

- Difficult question to address that will impact the design.

- Other issues: cooling, radiations …

Typical B meson flight time ~15ps

Two-technology concept

\[\sigma_z(\text{lumi region}) \approx 45 \text{ mm} \]
\[\sigma_t(\text{lumi region}) \approx 190 \text{ ps} \]
Trigger scheme

L0 Hardware Trigger: 1 MHz readout, high Energy signatures
- 450 kHz h^\pm
- 50 kHz μ/ν
- 150 kHz e/γ

Software High Level Trigger
- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers
- 12.5 kHz (0.6 GB/s) to storage

Software High Level Trigger
- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Buffer events to disk, perform online detector calibration and alignment
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
- 2-5 GB/s to storage

Partial event reconstruction
- Data preparation for tracking
- Track reconstruction
- Efficient event selection to reduce the rate to between 500 - 1000 kHz

Full event reconstruction
- Best tracking performance, add PID information
- Offline quality selections
- Physics analysis on output of the trigger

Re use the Run II strategy
Real Time Analysis (RTA)