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Previously on Electron Cloud WG
@ To do long-term tracking we require symplecticity in 6D.

@ Linear interpolation of the fields Ei(x,y), E,(x,y) violates
the symplecticity condition even in 4D (0«E, # 0y E).

@ Symplecticity can be recovered by interpolating a scalar
potential and taking analytical derivatives

@ as long as interpolation scheme guarantees C! continuity.
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Electron cloud kick

Strategy

Implement a 6D symplectic electron cloud kick” in tracking
produced by the Hamiltonian H(x,y,(;s) = B%mcng( ,¥,C)d(s),

where the scalar potential ¢ describes the e-cloud®.
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"Thin-lens, rigid beam, “recorded” plnch approximation, ¢ =
8see G. ladarola, CERN-ACC-NOTE-2019-0033.
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Tricubic Interpolation

If the e-cloud scalar potential, ¢{'4"%) is known on a 3D grid,
Tricubic Interpolation® can produce symplectic 6D kicks.
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on the 8 corners.

@ Derivatives are evaluated with
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Finite Differences.

gLekien, F & J. E., Marsden. (2005). Tricubic Interpolation in Three Dimensions. International

Journal for Numerical Methods in Engineering. 63. 10.1002/nme.1296.
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Average Pinch
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Interpolator Issues
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Closer look reveals irregularities.
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1D Analytical Investigation
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1D Analytical Investigation
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Differences we observe the same
irregularities when interpolating.
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@ When using the exact values of the
. derivative to interpolate, error is
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] sy A significantly reduced.
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@ Small error still there related to

° ¥ Vv step size.

To improve the electron cloud fields we
——————————— define a refinement procedure.
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Refinement Procedure

@ Beam size is very small compared
to chamber.

@ We need to focus on a region
around the beam.

@ Even with 500 x 500 points,
resolution is still not enough.
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Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.
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Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.

@ Create a finer grid.
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Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.

@ Create a finer grid.

© Linearly interpolate ¢-boundary.
o

o

o

12/25



Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.

@ Create a finer grid.

© Linearly interpolate ¢-boundary.
@ Linearly interpolate p inside.
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Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.

@ Create a finer grid.

© Linearly interpolate ¢-boundary.
@ Linearly interpolate p inside.

© Re-solve Poisson equation on finer
grid.

o
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At this point, ¢ solution is much
smoother.
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Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.

@ Create a finer grid.

© Linearly interpolate ¢-boundary.

@ Linearly interpolate p inside.

© Re-solve Poisson equation on finer
grid.

O Use Finite differences on finer grid

to calculate derivatives:
@, 26 020 95 Ry 2o 92 9o
)

Ox° Oy’ OC?* Ox0y’ 0xOC’ OyOd’ OxOydC
(7]

We now have a better interpolation
(better derivatives, smaller step size).

3
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Refinement Procedure

We must improve ¢ and its derivatives.

@ p, ¢ known on a coarse grid.

@ Create a finer grid.

© Linearly interpolate ¢-boundary.

@ Linearly interpolate p inside.

© Re-solve Poisson equation on finer
grid.

O Use Finite differences on finer grid

to calculate derivatives:
é 3¢ 04 9o B¢ ¢ P9 3¢
? Ox? dy? OC? OxAy’ 0x90(? Oyd(’ dx0yo¢ |-

@ Keep refined ¢ and derivatives on
the original grid.

Better interpolation without sacrificing
too much memory.
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Computational requirements

@ Grid in PyECLOUD already pushes the limits of a typical RAM.
@ Significant development to optimize memory consumption
during the refinement procedure.

@ Even then, solution of Poisson equation on such a fine grid can
easily exceed 100 GBs of memory.
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Computational requirements

@ Grid in PyECLOUD already pushes the limits of a typical RAM.

@ Significant development to optimize memory consumption
during the refinement procedure.

@ Even then, solution of Poisson equation on such a fine grid can
easily exceed 100 GBs of memory.

Used special resources:

o LIUPSGPU machine of ABP with 24 cores and 256 GB
memory.

e HTCondor nodes (BigMem) with 24 cores and 1 TB memory.

e HTCondor nodes (BigMem) with 48 cores and 512 GB
memory.
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Interpolator Issues

®  Discrete Points

——__Tricubic Interp.
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Irregularities are significantly suppressed through this procedure.
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Quantifying artifacts
In order to systematically study these artifacts, they must be
somehow quantified.

@ A Tricubic Interpolation on the field would provide a much

more accurate interpolation but not not be symplectic.

@ To have an indicator of the accuracy we compare the

symplectic interpolation from the potential (we call it f)
against the accurate interpolation on the field (we call it g)

log;o(Va)

10?

Quantifier:

fcell(f — g)2dV

Vi =
fcell g2dV
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Quantifying artifacts

1V — fcell(fig)zdv
o fcell g2dV

Maximum of V, , ¢ gives a good quantitative measure.
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Before refinement After refinement

e Up to an order of magnitude better with just
dx « &, dy «+ %, d¢ + &
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Global Picture

Histograms of log;o( Vi, ,¢) before and after the refinement can
give a global picture.
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@ Orders of magnitude gained with just
dx « &, dy «+ %, d¢ + %
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Impact of irregularities et e+ e
1 ~—__Tricubic In rp.
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@ Simple tracking of a linear
2D phase space rotation and
an e-cloud symplectic kick.

@ Very important to minimize
irregularities.

e By reducing them, there is
significant impact on the
beam particle motion.




Recipe for a single electron cloud interaction

@ Average over the many simulations of the same electron cloud
pinch to reduce particle noise.

@ Take advantage of symmetry conditions.
© Refine grids to improve derivative calculation.

© Use the obtained map within tracking code (sixtracklib)
o Development almost completed, testing has started
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Conclusion
Status:
@ We know how to conserve the symplecticity of the e-cloud
interaction (tricubic interpolation)
@ We know how to mitigate macro-particle noise of PyECLOUD
simulations (average over several pinches).
@ We know how to minimize artifacts of interpolation scheme
(derivatives evaluation on refined grid).
Future Developments:
@ Benchmark interpolation scheme on analytic (-dependent
Hamiltonians (RF-multipoles).
@ Check behaviour of “long-term” observables, e.g. Dynamic
Aperture.
o Install e-clouds in the arcs of the LHC (starting from MAD-X
model) and study losses and emittance at injection energy.

Thank you for your attention!

Konstantinos Paraschou
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