Update on development for single-particle tracking with e-clouds

Konstantinos Paraschou^{1,2}, Giovanni ladarola¹

¹CERN, Switzerland ²Aristotle University of Thessaloniki, Greece

Acknowledgements: R. De Maria, Y. Papaphillipou, L. Sabato, M. Schwinzerl

Electron Cloud WG CERN, Friday, 29th November 2019

Previously on Electron Cloud WG

- To do long-term tracking we require symplecticity in 6D.
- Linear interpolation of the fields E_x(x, y), E_y(x, y) violates the symplecticity condition even in 4D (∂_xE_y ≠ ∂_yE_x).
- Symplecticity can be recovered by interpolating a scalar potential and taking analytical derivatives
- as long as interpolation scheme guarantees C^1 continuity.

¹Electron Cloud Meeting #67, 10th May 2019 https://indico.cern.ch/event/811014/contributions/3379525/

Electron cloud kick

Strategy

Implement a 6D symplectic electron cloud kick⁷ in tracking produced by the Hamiltonian $H(x, y, \zeta; s) = \frac{qL}{\beta^2 \gamma mc^2} \phi(x, y, \zeta) \delta(s)$, where the scalar potential ϕ describes the e-cloud⁸.

 $x \mapsto x$ $p_x \mapsto p_x - \frac{qL}{\beta^2 \sim mc^2} \frac{\partial \phi}{\partial x}(x, y, \zeta)$ $v \mapsto v$ $p_y \mapsto p_y - \frac{qL}{\beta^2 \gamma mc^2} \frac{\partial \phi}{\partial v}(x, y, \zeta)$ $\zeta \mapsto \zeta$ $\delta \mapsto \delta - \frac{qL}{\beta^2 \alpha mc^2} \frac{\partial \phi}{\partial \zeta}(x, y, \zeta)$

⁷Thin-lens, rigid beam, "recorded" pinch approximation, $\zeta = \frac{\beta}{\beta_0}s - \beta ct$ ⁸see G. Iadarola, CERN-ACC-NOTE-2019-0033.

Tricubic Interpolation

Objective

If the e-cloud scalar potential, $\phi^{(i,j,k)}$ is known on a 3D grid, Tricubic Interpolation⁹ can produce symplectic 6D kicks.

$$f(x, y, z) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} a_{ijk} x^{i} y^{j} z^{k}$$

 $\begin{array}{l} a_{ijk} \text{ is found by imposing} \\ \left\{ f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial x \partial z}, \frac{\partial^2 f}{\partial y \partial z}, \frac{\partial^3 f}{\partial x \partial y \partial z} \right\} \\ \text{on the 8 corners.} \end{array}$

• Derivatives are evaluated with Finite Differences.

⁹Lekien, F & J. E., Marsden. (2005). Tricubic Interpolation in Three Dimensions. International Journal for Numerical Methods in Engineering. 63. 10.1002/nme.1296.

Average Pinch

• Macroparticle noise can be significantly reduced by averaging many (2000) electron cloud simulations.

Interpolator Issues

Closer look reveals irregularities.

1D Analytical Investigation

$$\phi = rac{x}{2} - \log(1 + e^x), \quad E = rac{1}{1 + e^x} - rac{1}{2}$$

• Calculating
$$E = -\partial_x \phi$$
 with Finite Differences we observe the same irregularities when interpolating.

We need to improve accuracy of derivatives.

1D Analytical Investigation

$$\phi = rac{x}{2} - \log \left(1 + e^x
ight), \quad E = rac{1}{1 + e^x} - rac{1}{2}$$

• Calculating
$$E = -\partial_x \phi$$
 with Finite
Differences we observe the same
irregularities when interpolating.

- When using the exact values of the derivative to interpolate, error is significantly reduced.
- Small error still there related to step size.

To improve the electron cloud fields we define a refinement procedure.

- Beam size is very small compared to chamber.
- We need to focus on a region around the beam.
- Even with 500 × 500 points, resolution is still not enough.

7

We must improve ϕ and its derivatives.

• ρ, ϕ known on a coarse grid.

.

We must improve ϕ and its derivatives.

- ρ, ϕ known on a coarse grid.
- Oreate a finer grid.

7

 Image: Control of the second secon

We must improve ϕ and its derivatives.

12 / 25

- ρ, ϕ known on a coarse grid.
- Oreate a finer grid.
- **3** Linearly interpolate ϕ -boundary.

6

6

We must improve ϕ and its derivatives.

- ρ, ϕ known on a coarse grid.
- Oreate a finer grid.
- **3** Linearly interpolate ϕ -boundary.
- **4** Linearly interpolate ρ inside.

5

6

We must improve ϕ and its derivatives.

- ρ, ϕ known on a coarse grid.
- Oreate a finer grid.
- **Image:** Linearly interpolate ϕ -boundary.
- Linearly interpolate ρ inside.
- Re-solve Poisson equation on finer grid.

6

7

At this point, ϕ solution is much smoother.

1	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
1	•	•	•	•	•	•	•	•	•	•	• 1
1	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	
											.
1			•	•	•			۰.			- I
1	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
1	•	•	•	•	•	•	•	•	•	•	• 1

We must improve ϕ and its derivatives.

- ρ, ϕ known on a coarse grid.
- Oreate a finer grid.
- Solution Linearly interpolate ϕ -boundary.
- Linearly interpolate ρ inside.
- Re-solve Poisson equation on finer grid.

—	•	•	•	•	•	•	•	•	•	•
† •	•	•	•	•	•	•	•	•	•	•
† •	•	•	•	•	•	•	•	•	•	•
† •	•	•	•	•	•	•	I	•	•	•
+ •	•	•	•	•	•	•	╈	•	•	•
+ •	•	•	•	•	•	•	+	•	•	•
• •	•	•	•	•	•	•	•	•	•	•
+ •	•	•	•	•	•	•	•	•	•	•
• •	•	•	•	•	•	•	•	•	•	•
+ •	•	•	•	•	•	•	•	٠	•	•
• •	•	•	•	•	•	•	•	•	•	•
+ •	•	•	•	•	•	•	•	•	•	•

We must improve ϕ and its derivatives.

- ρ, ϕ known on a coarse grid.
- Oreate a finer grid.
- **3** Linearly interpolate ϕ -boundary.
- Linearly interpolate ρ inside.
- Re-solve Poisson equation on finer grid.
- $\begin{aligned} & \bullet \quad \text{Use Finite differences on finer grid} \\ & \bullet \quad \text{to calculate derivatives:} \\ & \left\{ \phi, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial \zeta}, \frac{\partial^2 \phi}{\partial x \partial y}, \frac{\partial^2 \phi}{\partial x \partial \zeta}, \frac{\partial^2 \phi}{\partial y \partial \zeta}, \frac{\partial^3 \phi}{\partial x \partial y \partial \zeta} \right\}. \end{aligned}$
- **(2)** Keep refined ϕ and derivatives on the original grid.

Better interpolation without sacrificing too much memory.

Computational requirements

- Grid in PyECLOUD already pushes the limits of a typical RAM.
- Significant development to optimize memory consumption during the refinement procedure.
- Even then, solution of Poisson equation on such a fine grid can easily exceed 100 GBs of memory.

Computational requirements

- Grid in PyECLOUD already pushes the limits of a typical RAM.
- Significant development to optimize memory consumption during the refinement procedure.
- Even then, solution of Poisson equation on such a fine grid can easily exceed 100 GBs of memory.

Used special resources:

- LIUPSGPU machine of ABP with 24 cores and 256 GB memory.
- HTCondor nodes (BigMem) with 24 cores and 1 TB memory.
- HTCondor nodes (BigMem) with 48 cores and 512 GB memory.

Interpolator Issues

Irregularities are significantly suppressed through this procedure.

Quantifying artifacts

In order to systematically study these artifacts, they must be somehow quantified.

- A Tricubic Interpolation on the field would provide a **much** more accurate interpolation but not not be symplectic.
- To have an indicator of the accuracy we compare the symplectic interpolation from the potential (we call it f) against the accurate interpolation on the field (we call it g)

Quantifier:

$$V_{x} = \frac{\int_{cell} (f - g)^{2} dV}{\int_{cell} g^{2} dV}$$

Quantifying artifacts

In order to systematically study these artifacts, they must be somehow quantified.

- A Tricubic Interpolation on the field would provide a **much** more accurate interpolation but not not be symplectic.
- To have an indicator of the accuracy we compare the symplectic interpolation from the potential (we call it *f*) against the accurate interpolation on the field (we call it *g*)

Quantifier:

$$V_{x} = \frac{\int_{cell} (f - g)^{2} dV}{\int_{cell} g^{2} dV}$$

Quantifying artifacts

$$V_{x,y,\zeta} = rac{\int_{cell} (f-g)^2 dV}{\int_{cell} g^2 dV}$$

Maximum of $V_{x,y,\zeta}$ gives a good quantitative measure.

• Up to an order of magnitude better with just $dx \leftarrow \frac{dx}{2}, dy \leftarrow \frac{dy}{2}, d\zeta \leftarrow \frac{d\zeta}{2}.$

Global Picture

Histograms of $\log_{10}(V_{x,y,\zeta})$ before and after the refinement can give a global picture.

• Orders of magnitude gained with just $dx \leftarrow \frac{dx}{2}$, $dy \leftarrow \frac{dy}{2}$, $d\zeta \leftarrow \frac{d\zeta}{2}$.

Impact of irregularities

- Simple tracking of a linear 2D phase space rotation and an e-cloud symplectic kick.
- Very important to minimize irregularities.
- By reducing them, there is significant impact on the beam particle motion.

Recipe for a single electron cloud interaction

- Average over the many simulations of the same electron cloud pinch to reduce particle noise.
- 2 Take advantage of symmetry conditions.
- **③** Refine grids to improve derivative calculation.
- **O** Use the obtained map within tracking code (sixtracklib)
 - Development almost completed, testing has started

Conclusion

Status:

- We know how to conserve the symplecticity of the e-cloud interaction (tricubic interpolation)
- We know how to mitigate macro-particle noise of PyECLOUD simulations (average over several pinches).
- We know how to minimize artifacts of interpolation scheme (derivatives evaluation on refined grid).

Future Developments:

- Benchmark interpolation scheme on analytic ζ-dependent Hamiltonians (RF-multipoles).
- Check behaviour of "long-term" observables, e.g. Dynamic Aperture.
- Install e-clouds in the arcs of the LHC (starting from MAD-X model) and study losses and emittance at injection energy.

Thank you for your attention!