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Previously on Electron Cloud WG
To do long-term tracking we require symplecticity in 6D.
Linear interpolation of the fields Ex(x , y), Ey (x , y) violates
the symplecticity condition even in 4D (∂xEy 6= ∂yEx).
Symplecticity can be recovered by interpolating a scalar
potential and taking analytical derivatives
as long as interpolation scheme guarantees C 1 continuity.

1Electron Cloud Meeting #67, 10th May 2019
https://indico.cern.ch/event/811014/contributions/3379525/
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Electron cloud kick

Strategy

Implement a 6D symplectic electron cloud kick7 in tracking
produced by the Hamiltonian H(x , y , ζ; s) = qL

β2γmc2φ (x , y , ζ) δ(s),
where the scalar potential φ describes the e-cloud8.

x 7→ x

px 7→ px −
qL

β2γmc2
∂φ

∂x
(x , y , ζ)

y 7→ y

py 7→ py −
qL

β2γmc2
∂φ

∂y
(x , y , ζ)

ζ 7→ ζ

δ 7→ δ − qL

β2γmc2
∂φ

∂ζ
(x , y , ζ)

7Thin-lens, rigid beam, “recorded” pinch approximation, ζ = β
β0

s − βct
8see G. Iadarola, CERN-ACC-NOTE-2019-0033.
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Tricubic Interpolation

Objective

If the e-cloud scalar potential, φ(i ,j ,k) is known on a 3D grid,
Tricubic Interpolation9 can produce symplectic 6D kicks.

f (x , y , z) =
3∑

i=0

3∑
j=0

3∑
k=0

aijkx
iy jzk

aijk is found by imposing{
f , ∂f∂x ,

∂f
∂y ,

∂f
∂z ,

∂2f
∂x∂y ,

∂2f
∂x∂z ,

∂2f
∂y∂z ,

∂3f
∂x∂y∂z

}
on the 8 corners.

Derivatives are evaluated with
Finite Differences.

9Lekien, F & J. E., Marsden. (2005). Tricubic Interpolation in Three Dimensions. International
Journal for Numerical Methods in Engineering. 63. 10.1002/nme.1296.
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Average Pinch

⇓

Macroparticle noise can be
significantly reduced by
averaging many (2000)
electron cloud simulations.
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Interpolator Issues

Closer look reveals irregularities.
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1D Analytical Investigation

φ =
x

2
− log (1+ ex) , E =

1
1+ ex

− 1
2

Calculating E = −∂xφ with Finite
Differences we observe the same
irregularities when interpolating.

We need to improve accuracy of derivatives.
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1D Analytical Investigation

φ =
x

2
− log (1+ ex) , E =

1
1+ ex
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2

Calculating E = −∂xφ with Finite
Differences we observe the same
irregularities when interpolating.

When using the exact values of the
derivative to interpolate, error is
significantly reduced.
Small error still there related to
step size.

To improve the electron cloud fields we
define a refinement procedure.
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Refinement Procedure

Beam size is very small compared
to chamber.
We need to focus on a region
around the beam.
Even with 500× 500 points,
resolution is still not enough.
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Refinement Procedure

We must improve φ and its derivatives.

1 ρ, φ known on a coarse grid.
2

3

4

5

6

7
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1 ρ, φ known on a coarse grid.
2 Create a finer grid.
3 Linearly interpolate φ-boundary.
4

5

6

7

12 / 25



Refinement Procedure

We must improve φ and its derivatives.

1 ρ, φ known on a coarse grid.
2 Create a finer grid.
3 Linearly interpolate φ-boundary.
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Refinement Procedure

We must improve φ and its derivatives.

1 ρ, φ known on a coarse grid.
2 Create a finer grid.
3 Linearly interpolate φ-boundary.
4 Linearly interpolate ρ inside.
5 Re-solve Poisson equation on finer

grid.
6

7

At this point, φ solution is much
smoother.
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Refinement Procedure
We must improve φ and its derivatives.

1 ρ, φ known on a coarse grid.
2 Create a finer grid.
3 Linearly interpolate φ-boundary.
4 Linearly interpolate ρ inside.
5 Re-solve Poisson equation on finer

grid.
6 Use Finite differences on finer grid

to calculate derivatives:{
φ, ∂φ∂x ,

∂φ
∂y ,

∂φ
∂ζ ,

∂2φ
∂x∂y ,

∂2φ
∂x∂ζ ,

∂2φ
∂y∂ζ ,

∂3φ
∂x∂y∂ζ

}
.

7

We now have a better interpolation
(better derivatives, smaller step size).
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Refinement Procedure

We must improve φ and its derivatives.

1 ρ, φ known on a coarse grid.
2 Create a finer grid.
3 Linearly interpolate φ-boundary.
4 Linearly interpolate ρ inside.
5 Re-solve Poisson equation on finer

grid.
6 Use Finite differences on finer grid

to calculate derivatives:{
φ, ∂φ∂x ,

∂φ
∂y ,

∂φ
∂ζ ,

∂2φ
∂x∂y ,

∂2φ
∂x∂ζ ,

∂2φ
∂y∂ζ ,

∂3φ
∂x∂y∂ζ

}
.

7 Keep refined φ and derivatives on
the original grid.

Better interpolation without sacrificing
too much memory.
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Computational requirements

Grid in PyECLOUD already pushes the limits of a typical RAM.
Significant development to optimize memory consumption
during the refinement procedure.
Even then, solution of Poisson equation on such a fine grid can
easily exceed 100 GBs of memory.

Used special resources:
LIUPSGPU machine of ABP with 24 cores and 256 GB
memory.
HTCondor nodes (BigMem) with 24 cores and 1 TB memory.
HTCondor nodes (BigMem) with 48 cores and 512 GB
memory.
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Interpolator Issues

Irregularities are significantly suppressed through this procedure.
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Quantifying artifacts
In order to systematically study these artifacts, they must be
somehow quantified.

A Tricubic Interpolation on the field would provide a much
more accurate interpolation but not not be symplectic.
To have an indicator of the accuracy we compare the
symplectic interpolation from the potential (we call it f )
against the accurate interpolation on the field (we call it g)

Quantifier:

Vx =

∫
cell(f − g)2dV∫

cell g
2dV
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Quantifying artifacts

Vx ,y ,ζ =

∫
cell(f − g)2dV∫

cell g
2dV

Maximum of Vx ,y ,ζ gives a good quantitative measure.

Up to an order of magnitude better with just
dx ← dx

2 , dy ← dy
2 , dζ ← dζ

2 .
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Global Picture

Histograms of log10(Vx ,y ,ζ) before and after the refinement can
give a global picture.

Orders of magnitude gained with just
dx ← dx

2 , dy ← dy
2 , dζ ← dζ

2 .
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Impact of irregularities

Simple tracking of a linear
2D phase space rotation and
an e-cloud symplectic kick.
Very important to minimize
irregularities.
By reducing them, there is
significant impact on the
beam particle motion.
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Recipe for a single electron cloud interaction

1 Average over the many simulations of the same electron cloud
pinch to reduce particle noise.

2 Take advantage of symmetry conditions.
3 Refine grids to improve derivative calculation.
4 Use the obtained map within tracking code (sixtracklib)

Development almost completed, testing has started
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Conclusion
Status:

We know how to conserve the symplecticity of the e-cloud
interaction (tricubic interpolation)
We know how to mitigate macro-particle noise of PyECLOUD
simulations (average over several pinches).
We know how to minimize artifacts of interpolation scheme
(derivatives evaluation on refined grid).

Future Developments:
Benchmark interpolation scheme on analytic ζ-dependent
Hamiltonians (RF-multipoles).
Check behaviour of “long-term” observables, e.g. Dynamic
Aperture.
Install e-clouds in the arcs of the LHC (starting from MAD-X
model) and study losses and emittance at injection energy.

Thank you for your attention!
Konstantinos Paraschou
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