POSTGRES UNIVERSAL DATABASE

Oleg Bartunov Moscow University Postgres Professional

CERN, Jan 17, 2020

₿

Postgres developer/contributor since 1995

When I started using Postgres

- No Slonik
- No UTF-8, even no 8-bit
- No WAL
- No MVCC
- No replication
- No usable non-scalar data types
- No subselects, no window functions, no CTE
- It was Postgres95

Postgres developer/contributor since 1995

How to choose a right database ?

- People usually choose a database looking on
 - Functionality, Performance
 - Availability License, price
 - Local expertise, Personal experience
 - Compatibility to existing environment
 - Support
- After project started
 - Need new functionality, Better performance
- Project is in production, no way to change database
 - Starting to use various ugly «solutions»
 - System works, but looks pretty strange

If you chose a wrong database

System works, but looks pretty strange

PostgreSQL Universal Database

- Any project could start with PostgreSQL
- PostgreSQL is a reliable and stable database with rich functionality and long history
- PostgreSQL has liberal BSD license, cross platform (~30)
- Developed by international community, no vendor lock
- PostgreSQL is **EXTENSIBLE**, this is the very important feature, which people miss ! It allow database to support
 - New workloads
 - New functionality
 - New environment
 - Often without restarting a server, no need core programmer.

PostgreSQL Universal Database

Extensibility makes PostgreSQL Universal Database !

"It is imperative that a user be able to construct new access methods to provide efficient access to instances of nontraditional base types"

Michael Stonebraker, Jeff Anton, Michael Hirohama.

Extendability in POSTGRES, IEEE Data Eng. Bull. 10 (2) pp.16-23, 1987

Postgres can be extended:

Functions, data types, operators

Procedural languages (sql, pl/pgsql, pl/perl, pl/python, pl/tcl, pl/R, pl/java, ...,pl/v8) Indexes (Btree, Hash, GiST, GIN, SP-GiST, BRIN, BLOOM)

Foreign Data Wrappers (almost to all databases)

PostgreSQL: OLTP, MPP, OLAP, CLOUD, GIS, STREAM, TIMESERIES, GPU, NoSQL

PROFESSIONAL

Postgres Evolution

1996 — Project starts 1997 (6.1) — Internationalization +World 2005 (8) — Windows support +Window users 2010 (9) — Built-in replication +Enterprise users +NoSQL users 2014 (9.4) — Jsonb 2016 (9.6) — Parallel Query +OLAP users 2017 (10) — Logical Replication, Declarative Partitioning 2018 (11) — JIT 2019 (12) — Pluggable storage API, SQL/JSON 202X (?) - Cloud support ! +ALL

Postgres Community Evolution

- 198X Academic Postgres (x10)
- 1995 Community Postgres95 (<400)
- PostgreSQL V6

Community develops for Community

- 200X First Postgres-centric companies (GreatBridge, 2ndQuadrant, EDB...)
 +Full-time developers for Community
 - First enterprise forks

Professional Postgres

- 2010 Enterprise companies recognize Postgres
- 2015 Majority of major developers were hired by PGcompanies (+Citus Data, +Postgres Professional)
 - Now the companies drive the development
 - Community: test, approve
 - Postgres became Enterprise ready (More forks)
 - Postgres became Professional

PG-companies - proxy between Enterprise and Community

- Big enterprises require additional features "right now"
- PG-companies develop, support and test these features in their forks
- Some features returned back to community (not easy)
- Community accept (if) and support code

- 64-bit XID (community?)
- Multi Master cluster (community?)
- Incremental backup (pg_probackup, opensource)
- Advanced partitioning (pg_pathman, opensource)
- Threaded Postgres (community?)
- Sharding (in development)
- Built-in pooler (PG13 ?)
- Seamless upgrade (in development)
- SQL/JSON (PG12)

Gres Popularity of PostgreSQL is growing

Hacker News Hiring Trends - 2019

Postgres in Russia is database #1

PostgreSQL > Oracle in Russia

PostgreSQL and Oracle vacancies

Web and Postgres: 1996-2018

- 1996: Start using Postgres on Web, no 8-bit support introduced **locale** support
- 1999: World's top-5 portal. We start with PostgreSQL 6.5. on server ~ my smartphone to support > 1 mln. users/day. Quickly run out of resources
- Denormalize, use arrays -> slow -> discover GiST \rightarrow improve GiST intarray with indexes
- Need **FTS**, made **tsearch** using intarray and GiST indexes
- Need fast search on hierarchical data **Itree** GiST indexes
- Need flexible schema **hstore** GiST index
- Need faster FTS **GIN** index for tsearch, hstore
- Need misprint search **pg_trgm** GiST/GIN indexes
- Compete to NoSQL better/binary json **jsonb** GIN index **jsonpath**
- Need faster FTS **RUM** access methods

NoSQL Postgres

What is the fate of the Universe ?

WRITTEN IN THE STARS

SN la 1994D in NGC 4526

PROFESSIONAL

ares

SN 1987a, Type II, +2.9, Tarantula Nebulae in LMC, 168 000 ly, progenitor: Sanduleak -69° 202,

The Scale of the Universe

Supernovae(Ia) - «standard candles» Used to measure the distance to the host galaxy

Posicial M31 (Andromeda), AZT-5

SN 2008fv in NGC 3147, Draco Dmitry Tsvetkov, SAI MSU

Blink Comparator (Manual Discovery) Many hours of hard work !

PROFESSIONAL M31 (Andromeda), AZT-5 M31 (Andromeda), AZT-5 × -00001 | 1.1458447 | -89.9186147 × -00002 | 1.3300139 | -89.9186147

x-00002 | 1.3300139 | -89.9332336 x-00003|3.2556022|-89.9641031 -00004|3.6464625|-89.9060142 -00005 | 6.3110253 | -89.9523947 x-00006|6.6275517|-89.9279197 <-00007 | 7.8266025 | -89.9129272</p> <-00008|9.0694378|-89.9714031</pre> x-00009|9.6627953|-89.9244314 <-00010|10.0494292|-89.9705058</pre> <-00011|10.4863922|-89.9699058 x-00012|11.0953692|-89.9016031 <-00013|11.3240233|-89.9344336</pre> x-00014|11.7906064|-89.9070308 x-00015|12.0416581|-89.9300586 x-00016|12.0522308|-89.9002281 x-00017 | 12.2808536 | -89.9107669 x-00018 13.0316142 -89.9214558 x-00019|13.8727033|-89.9577031 x-00020|14.6546639|-89.9191919 x-00021|18.3035981|-89.9447475 <-00022|18.5185631|-89.9446836</pre> x-00023|19.8675597|-89.9836308 x-00024|20.9699533|-89.9226864 x-00025|21.6777744|-89.9256808 x-00026|23.3660669|-89.9036558 <-00027|24.2841308|-89.9516475</pre> x-00028|24.3273161|-89.9202392 x-00029|24.5540458|-89.9246003 <-00030|24.5655172|-89.9122336 x-00031|26.3487519|-89.9460336 x-00032|26.5268008|-89.9311503 <-00033 26.6070808 -89.9271808 x-00034|27.4104919|-89.9768558 x-00035|27.8290442|-89.9304622 x-00036|28.5552036|-89.9199117 x-00037 29.4407347 -89.9762836 <-00038|30.5729608|-89.9377753 x-00039|30.7101131|-89.9105642 x-00040|33.2918250|-89.9106614 x-00041|33.4843678|-89.9442058

Observations: 10^5

PROFESSIONAL

x-00001	1.1458447	-89.9186147
x-00002	1.3300139	-89.9332336
x-00003	3.2556022	-89.9641031
x-00004	3.6464625	-89.9060142
x-00005	6.3110253	-89.9523947
x-00006	6.6275517	-89.9279197
x-00007	7.8266025	-89.9129272
x-00008	9.0694378	-89.9714031
x-00009	9.6627953	-89.9244314
x-00010	10.0494292	-89.9705058
x-00011	10.4863922	-89.9699058
x-00012	11.0953692	-89.9016031
x-00013	11.3240233	-89.9344336
x-00014	11.7906064	-89.9070308
x-00015	12.0416581	-89.9300586
x-00016	12.0522308	-89.9002281
x-00017	12.2808536	-89.9107669
x-00018	13.0316142	-89.9214558
x-00019	13.8727033	-89.9577031
x-00020	14.6546639	-89.9191919
x-00021	18.3035981	-89.9447475
x-00022	18.5185631	-89.9446836
x-00023	19.8675597	-89.9836308
x-00024	20.9699533	-89.9226864
x-00025	21.6777744	-89.9256808
x-00026	23.3660669	-89.9036558
x-00027	24.2841308	-89.9516475
x-00028	24.3273161	-89.9202392
x-00029	24.5540458	-89.9246003
x-00030	24.5655172	-89.9122336
x-00031	26.3487519	-89.9460336
x-00032	26.5268008	-89.9311503
x-00033	26.6070808	-89.9271808
x-00034	27.4104919	-89.9768558
x-00035	27.8290442	-89.9304622
x-00036	28.5552036	-89.9199117
x-00037	29.4407347	-89.9762836
V-00038	30 5729608	-89 9377753

Catalog(s): 10^9

	t-0000001	1.1458447	-89.9186147 0	0.015 0.028
	t-0000002	1.3300139	-89.9332336 0	0.050 0.110
	t-000003	3.2556022	89.9641031	0.050 0.050
	t-0000004	3.6464625	-89.9060142 0	0.204 0.224
	t-0000005	6.3110253	-89.9523947 0	0.114 0.050
	t-0000006	6.6275517	-89.9279197 0	0.098 0.150
	t-0000007	7.8266025	-89.9129272 0	0.025 0.021
	t-000008	9.0694378	-89.9714031 0	0.200 0.200
	t-0000009	9.6627953	-89.9244314 (0.000 0.000
	t-0000010	10.0494292	-89.9705058	0.0500.228
	t-0000011	10.4863922	-89.9699058	0.2000.200
	t-0000012	11.0953692	-89.9016031	0.0500.259
1	t-000013	11.3240233	-89.9344336	0.050 0.050
	t-0000014	11.7906064	-89.9070308	0.1590.131
	t-0000015	12.0416581	-89.9300586	0.2160.050
	t-0000016	12.0522308	-89.9002281	0.0500.050
	t-0000017	12.2808536	-89.9107669	0.0500.050
	t-0000018	13.0316142	-89.9214558	0.1520.120
	t-0000019	13.8727033	-89.9577031	0.0500.121
	t-0000020	14.6546639	-89.9191919	0.0500.069
	t-0000021	18.3035981	-89.9447475	0.1390.440
	t-0000022	18.5185631	-89.9446836	0.0570.268
J	t-0000023	19.8675597	-89.9836308	0.0500.120
	t-0000024	20.9699533	-89.9226864	0.0500.050
	t-0000025	21.6777744	-89.9256808	0.0550.105
	t-0000026	23.3660669	-89.9036558	0.0500.135
	t-0000027	24.2841308	-89.9516475	0.2130.050
	t-0000028	24.3273161	-89.9202392	0.5500.999
	t-0000029	24.5540458	-89.9246003	0.1600.086
	t-000030	24.5655172	-89.9122336	0.2050.050
	t-0000031	26.3487519	-89.9460336	0.0500.095
	t-0000032	26.5268008	-89.9311503	0.3350.245
	t-0000033	26.6070808	-89.9271808	0.0500.075
	t-0000034	27.4104919	-89.9768558	0.0940.090
	t-0000035	27.8290442	-89.9304622	0.0170.019
	t-0000036	28.5552036		
	t-0000037	29.4407347	-89.9762836	0.635 0.265
		20 6/20600	-00 0977759	n 21 / n 170

Astronomy meets database

Indexing the SKY with PostgreSQL

Acceleration Expansion !

Nobel Prize in Physics 2011 POSE GIES

Saul Perlmutter ,Brian P. Schmidt ,Adam G. Riess

Postgres in the Cloud The future of Postgres

PostgreSQL Future

- Clouds default platform for databases, 75% of databases in 2022 will be in clouds (Gartner, June 2019)
- Challenges to Postgres
- Zero administration Adaptive Postgres, Seamless upgrade (bugfix,security) Scalability — Built-in sharding, Numa support, multicore improvements
- Multitenancy
- More storages, better NoSQL, Blockchain support

