
Andreas-Joachim Peters
CERN IT Storage Group

Checksum Support

EOS WORKSHOP 2020Checksum Support

Overview

• checksum types

• improvements in EOS v4.6.8
• benchmarks

• impact on IO / outlook

Checksums are fundamental
for data integrity checks.
EOS uses them for block
and file integrity checks.

EOS WORKSHOP 2020Checksum Support

Checksum Support
• Classical EOS checksum

types

• adler32

• crc32

• crc32c

• md5

• sha1

Classical checksum usage
• adler32: file checksum in all LHC VOs but ALICE
• md5: file checksum in ALICE
• md5: file checksum for S3 storage
• crc32: zip library / *.root files
• crc32c: scsi - default block checksum in EOS rain 
AVX accelerated

adler & crc checksums are non-cryptographic hashes
which can be combined (= parallelized)
md5 computation cannot be parallized!

EOS WORKSHOP 2020Checksum Support

IO impact of checksumming
During EC testing for ALICE we realised that the single stream performance  
is bottlenecked mainly by MD5 computation.

Started investigation to get faster implementation of currently supported
checksumming algorithms and added some modern ones and a generic
eos-checksum command, which provides all available flavours.

Intel-ISAL(-crypto) libraries bring AVX accelerated version of several
non-cryptographic checksums for EL7.

‘Unfortunately’ the currently used  
MD5 implementation (openssl) is the fastest available.

EOS WORKSHOP 2020Checksum Support

IO impact of checksumming

Data Input Checksum

1 GB/s 400 MB/s

285 MB/s

1 GB = 1s

1GB 1GB

1 GB = 2.5s

sync. pipeline

slow checksum

EOS WORKSHOP 2020Checksum Support

IO impact of checksumming

Data Input CKS

1 GB/s 10 GB/s

909 MB/s

1 GB = 1s

1GB 1GB

1 GB = 0.1s

sync. pipeline

fast checksum

EOS WORKSHOP 2020Checksum Support

Checksum Benchmarks
eos-checksum <flavor> <cached-file> @ 2.3GHz XeonEOS 4.6.8

remark: this is not the speed of the algorithm alone, but IO + algorithm!

now
> 3x faster

EOS WORKSHOP 2020Checksum Support

Summary

We have modernised the stack of supported checksums and provide now  
the fastest available implementations for adler & crc32c since EOS 4.6.8

If you have to chose: avoid cryptographic checksums if they are not required to  
identify contents. adler & crc flavours can combine hashes of blocks into final 
hashes and are compatible with the concepts of distributed storage, where a file 
is not only located on a single disk.

We have seen in incidents at CERN that adler32 is actually not good enough  
to identify certain systematic hardware bit corruptions. It is simple to construct
corruptions with identical adler values.

