

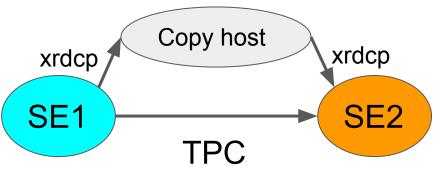
New EOS flavours, Inspired by ALICE

Testimonials:

"This trio of releases comes in the most delicious flavours - our favorite one is definitely the Watermelon Wonderland! Thank you EOS!"

"At a mere zero euros, we feel that this is the perfect gift for any computing site, or stash it away and give it to your favourite sysadmin for Christmas!" A Large Ion Collider Experiment

EOS in ALICE - present and future



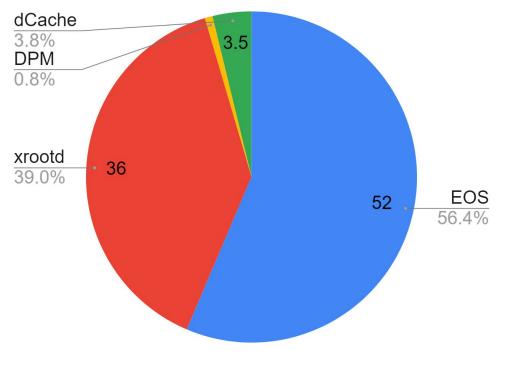
EOS workshop, 4 February 2020

ALICE use of storage in general

- On the Grid, ALICE uses exclusively *xrootd* protocol for all data write/read from *local* and *remote* storage
- No FTS *xrdcp* and *xrd3cp* (now popularly known as TPC) to transfer data since beginning of times
- Initially, ALICE advisory was to install storage with vanilla xrootd management
 - Simplifies operation
 - No DB to worry about

ALICE use of storage in general + EOS

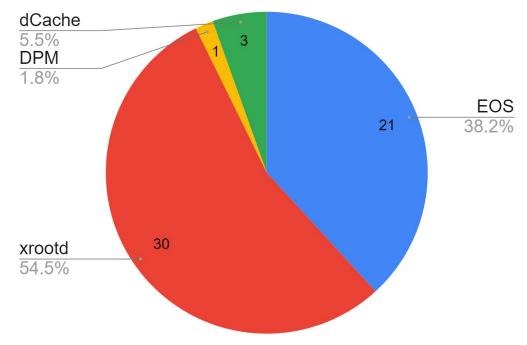
- Since several years, we encourage sites to migrate to EOS
 - Especially for large chunks of new storage servers
- Clear advantages
 - Integrated admin tools for operation and debugging
 - Full support by developers and active user forum
 - Long-term strategic support and collaborative options
 - Cheapest hardware (JBODs with no HW RAID)
 - High-level data security by using erasure coding
 - No need for complicated and expensive cluster filesystems



Storage today - volume management

- ~100PB of disk SEs
- Picture is different for tape instances, but we do not discuss these here

SE volume in PB per managment type



Storage today - instance management

- Largest count are still xrootd-managed instances
 - Tend to be smaller capacity SEs
 - Still easiest to install
- Individual storage behaviour does not depend on management software

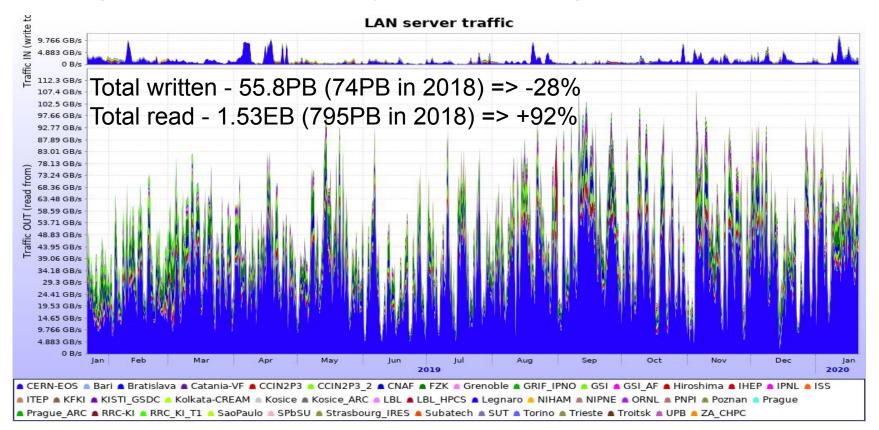
SE management software per instance (count)

ALICE data management policy

- All files on Grid storages anywhere in the world are annotated in the central catalogue
 - No exceptions, no private/group direct access to storage
 - No roles defined on the storage element, all accesses mapped to the only "ALICE" account
 - Token authentication, signed by central services (similar: Macaroons, Sci/WLCG Tokens)
- All of the above simplifies SE operation
 - Quotas and ACLs are managed centrally
 - Data transfers are managed centrally
 - Goal-minimize load on site admins, SEs are like block devices for the VO

Important storage metrics and consequences

- Unrestricted and fast local read access to data
 - Read/write ratio = **15/1** (!) (was 11/1 a year ago)
- Storage should not be a bottleneck
 - In terms of client access rate and throughput
 - \circ Jobs go to data remote WAN reading <5%


=> Most important is to have the site network fabric/WNs and SE correctly paired in terms of performance

• 1. deploy cheap and reliable storage, 2. invest in network fabric

=> EOS provides the answer to the first requirement

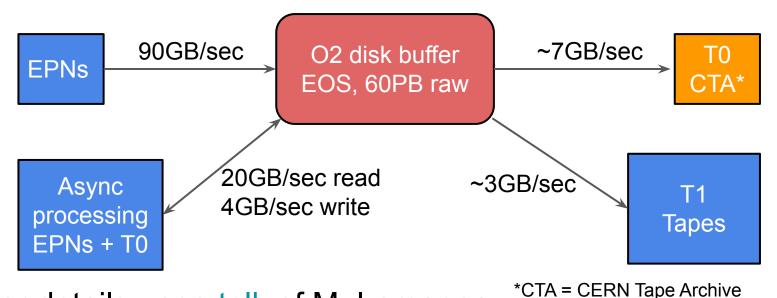
Storage access - always increasing!

Availability of the storage

 Minimizing remote reading and absence of replicas => individual storage availability is critical for operation

 Target availability for SE >95%

Statistics						
Link name	Data		Individual results of reading tests			Overall
	Starts	Ends	Successful	Failed	Success ratio	Availability
Birmingham::EOS	16 Jan 2019 10:52	16 Jan 2020 10:59	8408	322	96.31%	96.35%
CERN::EOS	16 Jan 2019 11:43	16 Jan 2020 10:52	8852	47	99.47%	99.49%
CERN::EOSALICEDAQ	16 Jan 2019 10:53	16 Jan 2020 11:00	8738	5	99.94%	99.94%
CERN::OCDB	16 Jan 2019 11:44	16 Jan 2020 10:52	8857	43	99.52%	99.52%
Hiroshima::EOS	16 Jan 2019 10:50	16 Jan 2020 10:58	8616	131	98.50%	98.52%
ICM::EOS	05 Jun 2019 19:31	16 Jan 2020 11:03	4971	421	92.19%	92.21%
JINR::EOS	16 Jan 2019 10:50	16 Jan 2020 10:57	8561	187	97.86%	97.87%
KISTI_GSDC::EOS	16 Jan 2019 10:54	16 Jan 2020 11:01	8772	113	98.73%	98.72%
Kosice::EOS	16 Jan 2019 10:51	16 Jan 2020 10:58	8790	101	98.86%	98.85%
LBL_HPCS::EOS	16 Jan 2019 10:53	16 Jan 2020 11:01	8568	318	96.42%	96.37%
NIHAM::EOS	13 Feb 2019 03:09	16 Jan 2020 11:02	7599	483	94.02%	94.03%
NIPNE::EOS	16 Jan 2019 10:50	16 Jan 2020 10:57	7830	917	89.52%	89.51%
RRC_KI_T1::EOS	16 Jan 2019 11:45	16 Jan 2020 10:53	8721	30	99.66%	99.66%
SPbSU::EOS	16 Jan 2019 11:46	16 Jan 2020 10:54	8669	82	99.06%	99.07%
Subatech::EOS	16 Jan 2019 11:45	16 Jan 2020 10:53	8865	33	99.63%	99.62%
UNAM_T1::EOS	16 Jan 2019 11:46	16 Jan 2020 10:54	7901	826	90.54%	90.59%
UPB::EOS	16 Jan 2019 10:52	16 Jan 2020 10:59	8770	118	98.67%	98.66%
ZA_CHPC::EOS	16 Jan 2019 10:49	16 Jan 2020 10:57	8608	104	98.81%	98.82%


Other critical use cases - Conditions data

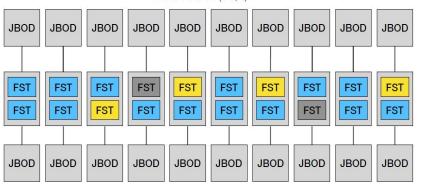
- Run1+Run2 set of ROOT files distributed over several Grid SEs
 - Used for offline tasks (reco/MC/analysis)
 - Primary source was CERN::OCDB EOS instance with multiple internal replicas
 - Backup in CVMFS
- Run3 combination of online stream for synchronous (realtime) processing + ROOT/other objects for asynchronous (offline) processing
 - New REST API to access conditions data, HTTP access to storage is explored
 - All objects in CERN::OCDB EOS instance
 - Will see order of magnitude increase of data volume (not critical) and access frequency
 - Tested and confident that the schema will work

Other critical use cases - data buffer for O2 facility

- 60PB raw capacity, RS erasure coded (level of security to be defined)
- Based on cheap JBODs, SATA drives, EOS managed

For details - see <u>talk</u> of M. Lamanna

ALICE


Grid evolution

- ALICE Computing Model for Run3 continues to track the 'flat funding' resources growth scenario (+10-15%/year)
- Growing interest in SE consolidation
 - Mostly in terms of sharing of responsibilities/experience for operation
 - Country borders still a thing common investment in SEs is not happening soon
 - ... even between sites of the same country
 - Not exactly a 'Data lake' scenario, yet
- Having a common SE management system is a compulsory first step
- Even more sparse replica scenario RAW data will not have a second copy
 - Smart storage solutions with high data protection
 - Temporary unavailability better tolerated if data is secure

Yet another EOS application - diskless custodial SE

- Project of the KISTI T1 centre (S. Korea) replace the tapes with inexpensive, but secure disk storage
 - Simplify the operation of the T1 centre, reduce exposure to a shrinking tape market
- Storage designed around EOS with EC, inexpensive JBODs
- Extensive fit-for-purpose studies of selected HW

EOS RAIN6 (14,4)

- RS(14,4) = 77.7% of RAW capacity
- 5x10⁻⁹ theoretical file loss probability
- Easy to upgrades nodes without degrading performance
- Further security and data integrity methods will be applied
- Power consumption 1.75W/TB (tape 0.5W/TB)

General takeaway for ALICE

- Disk storage is and will continue to be one of the integral assets of distributed computing
- Data volumes increase in line with the expected yearly Grid growth
- In our experience the storage load is not linear with increase of data volume
 - Storage management solutions must be future-protected in this respect
 - Computing models must also take this into account (local vs. remote access)
- Even less data replication
 - More pressure on storage to 'never lose data'
 - Must learn how to live with temporary data unavailability (longer maintenance/interruptions of service), but know that the data is safe
 - Rely on storage solution (see erasure coding) to protect data
- ALICE upgrade will add a few more SE-dependent projects (CCDB, large disk buffer, tape replacement solution
- Storage consolidation requires uniformity of storage management solutions

Acknowledgements

- To all experts at the computing centres providing resources for ALICE thank you for your support and dedication in the past 10 years of operation!
 - More will be asked of you in the next years
- To the CERN storage group and EOS experts thank you for the storage and for being behind it 100%!
 - See above sub-bullet :-)