

Michal Simon

XRootD: the importance of R5

Outline

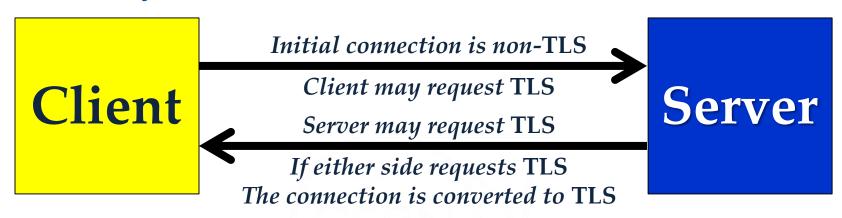
- A lot about TLS
- What's else in R5
- What's on the horizon

The Next BIG ONE: R5

- Introduces (and sets ground) for many new features, most notably encryption
 - Breaks plug-in ABI in some cases
 - Some external plug-ins will need to recompile (e.g. EOS!), no source changes required
- First release candidate cut in November 2019, second coming soon, final release planned for 2020 Q1

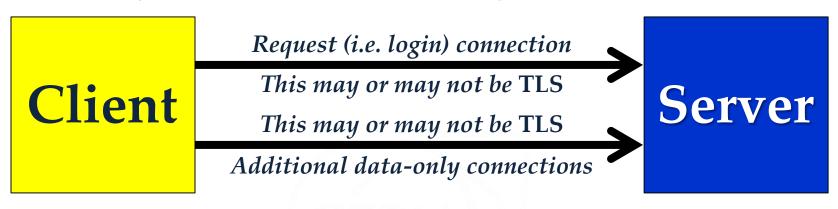
TLS: Transport Layer Security

- Why to do it?
 - Allow for authorization token handling (e.g. SciTokens)
 - Further evolution of TPC mechanism
 - Improves security and data integrity
 - Transfer confidential data with root/xroot protocol
- Biggest challenges:
 - Backward compatibility and forward migration path

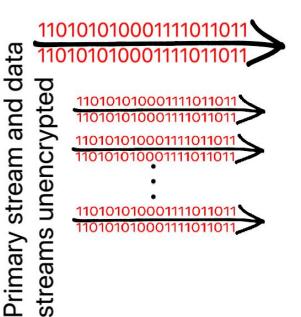


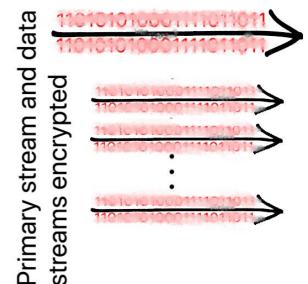
Flexibility first!

- Not every client supports TLS
 - We need to supply backwards compatibility
- Not everything needs TLS
 - we need to account for operational context
- A connection may or may not require TLS
 - at the discretion of the client, or
 - at the insistence of the server

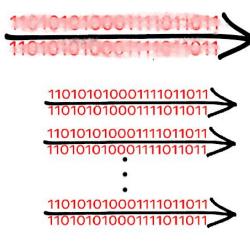

Flexibility first!

- The heart of flexible TLS is negotiations
 - Ability to go from non-TLS to TLS at any time
 - Provides backward compatibility and eases migration
 - No special ports are needed!


Flexibility first: super flexibility



- The server may instruct the client to encrypt only the control stream but not the data (reads and writes payload)
 - Useful for HEP use case (similar to gridFTP)



Flexibility first: at a glance

Primary stream encrytped data streams unencrypted

What triggers TLS?

- Client URL that uses roots or xroots
 - E.g.: xrdcp roots://server//mydata /tmp
- Server configuration
 - TLS may be required for certain contexts
 - Third Party Copy
 - All TLS-capable clients
 - Control channel only
 - For all data

XRootD TLS implementation

- Based on OpenSSL, All typical deployment versions are supported:
 - Version 1.1.0 and above
 - Version 1.0.x with custom hostname verification
 - Should also work with 0.9
- All TLS actions are logged
 - What version of TLS is being used
 - When connection switches to TLS
- OpenSSL asynchronous API with an event-loop (including TLS handshake, occasionally a read operation may require a write event and vice-versa)

R5: more than TLS ...

- Plug-in stacking
- New general monitoring stream
- Better containerization coexistence
- XCache improvements
- Extended stat
- Client channel-level plug-ins (allow for redirections between protocols)

R5: Extended Attributes

- Allow adding metadata to a file
 - Server exposes only user namespace
- Done via C++ or Python API or xrdfs command
 - Also, xrdcp has an option to preserve xattr
- Requires underlying file system support (most file systems have it)

Post R5

- RDMA support for better HPC integration
 - Maybe use cases in modern DAQ (reassembles more and more HPC)?
- Appending data to ZIP archives (with server side support)
- Request bundling, file descriptor and memory splicing
- TPC put/get requests encapsulating whole process
 - multiprotocol, access tokens
- uid/gid tracking for files/directories
- Streaming with end-to-end data verification

Summary

- Significantly extends usability
 - Important as XRootD is embedded in many HEP storage systems (EOS!, DPM, CTA, dCache (Java implementation), QServ)
 - New experiments are also relying on XRootD
 - E.g. Dune, LSST, LCLS II
- Addresses new use cases, e.g. access tokens, growing importance of XCache

Questions?

12/06/2019 Michal Simor