
Andreas-Joachim Peters
CERN IT Storage Group

Web App
Access to EOS using OAUTH2

EOS WORKSHOP 2020Web App Access

Web App Access

In front-end web-services today (e.g. SWAN/CERNBOX Web) we provide the
involved service gateways with privileges to either create kerberos token or to
have sudo access to act on behalf of the user. This approach works well,
but with regard to security considerations violates the least privilege model.

Web Applications on the other hand typically use single-sign-on mechanisms
and CERN is transitioning the SSO infrastructure to be based on KeyCloak
(OAUTH2 tokens).

EOS WORKSHOP 2020Web App Access

Web App Access
In a joint effort we worked on the realisation of JIRA OS-9604 - allowing to use a
single sign-on token for EOS access via eosxd.

The initial idea exporting the SSO token as an environment variable
failed, because tokens are relatively short-lived and need to be refreshed.
In LINUX environment variables are inherited on fork e.g. it is impossible
for a parent process to change the environment variable of inheriting
children.

This lead us to implement what was implemented already decades ago:
a token file

https://its.cern.ch/jira/browse/OS-9604

EOS WORKSHOP 2020Web App Access

OAuth2 Token
Support in EOS

eosxd has (thanks to the modular design of the security infrastructure from
Georgios) all the logic to support token files.

eosxd picks up the token file either from a default location
/tmp/oauthtk_$UID or from a location set via an environment variable
OAUTH2_TOKEN=[FILE:]<tokenfile>

EOS WORKSHOP 2020Web App Access

OAuth2 Token
Transport

XRootD4 has request encryption on the wire. Therefor the token is transferred as
an endorsement in an sss authentication.

To provide sss we use a nobody key e.g. the key alone authenticates as user
nobody, but if an endorsement is present, the contained oauth2 token is
resolved at the allowed AuthResolver service, which provides which CERN
user is authenticated by the SSO token.

Since every MGM call calls an ID mapping function, which translates embedded
tokens, we currently cache these token by default for 15 minutes in the MGM,
before re-checking them again agains the AuthResolver service.

EOS WORKSHOP 2020Web App Access

OAuth2 Token
Transport

[root@ajp auth]# ./oinit apeters
Password:
info: created token file /tmp/oauthtk_0  

[root@ajp auth]# cat /eos/ajp/proc/whoami
Virtual Identity: uid=100755 (2,99,100755) gid=1338 (1338,99,4) [authz:oauth2]
host=ajp.cern.ch domain=cern.ch geo-location=ajp key=<oauth2> fullname='Andreas Joachim
Peters' email='andreas.joachim.peters@cern.ch'

[root@ajp auth]# rm /tmp/oauthtk_0  
rm: remove regular file '/tmp/oauthtk_0'? y

[root@ajp auth]# cat /eos/ajp/proc/whoami  
Virtual Identity: uid=99 (99) gid=99 (99) [authz:unix] host=ajp.cern.ch domain=cern.ch
geo-location=ajp

mailto:email='andreas.joachim.peters@cern.ch

EOS WORKSHOP 2020Web App Access

Outlook
These mechanism can be used for SWAN and CERNBOX web front-ends and
provide a stream-
lined and more secure authorisation framework.

Using the concept of scopes, the usability (abuse) of the token can be even more
restricted in the future! 

Ideally XRootD could provide a native token-exchange mechanism / API in
XRootD5. The currently used backdoor via sss authentication+endorsement has the
advantage that the token is only exchanged once (which makes sense if you grant
accessto a subtree and not single files).

