Potential changes to BSI (N2VE, DAQ, others)

Jack Fowler

Outline

- N2 VE implications
- DAQ movement implications
- Other potential items

N2 Value Engineering Proposal

Current Envelope drawing of CUC for Cryogenics

View of CUC in current model

More CUC infrastructure

Potential envelope drawing for N2,VE D SPACE TO BE ADJUSTED PER PRIMARY LN2 REFRIGERATION ENVELOPE **Potential** space for PRIMARY LN2 REFRIGERATION ENVELOPE ADDITIONAL LN2 REFRIGERATION ENVELOPE (AS NEEDED BY VENDOR REQS.) N2VE **Current DAQ** BOLLARDS TO BE INSTALLED IN CUC AROUND ENTIRE PERIMETER OF LA/ EQUIP. AND LN2 SYSTEM ENVELOPES (TYP.) location 1 Level 4850 - CUC - FRA LN2 REFRIGERATION ENVELOPE (4'-9") (3'-2") 09/09/2019 FERMI NATIONAL ACCELERATOR LABORATORY UNITED STATES DEPARTMENT OF ENERGY 09/12/2019 LN2 EQUIP ENVELOPES - CUC FRA4

Potential changes to the underground BSI

- Redistribute chilled water
- Redistribute power
- Conditioned air in the CUC
- Physical space layout to accommodate the addition equipment

Potential changes to surface infrastructure

Surface
cryogenic
receiving
facilities would
be eliminated
or greatly
reduced

Potential changes to Ross shaft piping

Current cryogenic piping in the Ross would be reduced

CF will provide:

- Two 16 in NPS Sch 40 pipes for the low-pressure (max 50 Psig) return GN₂.
- Two 8 in NPS Sch 40 pipes for the high-pressure (max 700 Psig) GN₂.
- Shaft piping shall include Victaulic (or similar) couplings every 18 vertical feet.

Cooling implications summarized

Total cooling provided					
underground	5600				
				Loads for	Loads for
				Det 1	Det 1
		Loads for	Loads for	operation	operation
		Det 1	Det 1	Det 2	det 2
All loads are in kW	Loads at AUP	filling	operation	filling	operation
Heat load from rock surfaces	176	176	176	176	176
Total heat load from non					
detector equipment	492	492	492	492	492
Estimated Detector rack load per					
detector	0	0	240	240	480
Estimated DAQ rack load per					
detector	0	0	100	100	200
Estimated heat load for N2VE					
during filling	0	2550	0	2550	0
Estimated heat load for N2VE					
during operation	0	0	1275	0	1275
Sum of the heat loads	668	3218	2283	3558	2623
Cooling available	4932	2382	3317	2042	2977

Relocation of DAQ

Current DAQ space in CUC

- The current DAQ space supplies the infrastructure to support ~ 60 racks
 - Power
 - Cooling
 - Fire suppression
 - Cable trays

Current layout inside DAQ room in CUC

Planned moved of CUC to detector caverns

New DAQ location

New DAQ room model to be added in V6

Implications to BSI for DAQ move

- Reduce or eliminate the chilled water to existing DAQ room
- Redistribute the power from CUC to detector caverns
- Utilized the current chilled water in detector caverns to cool new DAQ locations
- Mezzanine layout and support
- Termination/routing of fibers

DAQ relocation path forward

- Replace barracks with real DAQ model
- Determine cooling method for racks and changes to chilled water supply
- Layout cable/fiber routing to/from DAQ room
- Address ESH issues egress, fire suppression, etc
- Retain space in CUC for detector UPS system. Redistribute power and cooling to support UPS
- Document power and cooling distribution needs to BSI
- Added scope of infrastructure not in CF AHU, DAQ room
- To proceed a change request will be required

Others

- Clean room mechanical support
- Electrical distribution to cleanroom and detector caverns
- Logistics items at ross headframe and 4850 station
- Are there more?

Backups

