

CDR of the DFH Cryostat - WP6a

Design development & preliminary production schedule

Paul Cruikshank

15 November 2019 - CERN

Contents

- Milestones
 - DFHx #1 and DFH series
- Design Development
 - Status, next steps, resources
- Cryostat Production
 - Manufacturing & assembly approach
 - Possible preparations
- Summary

Green: manufacturing Blue: tests Yellow: tendering (from spec to adjudication of contract) Gray: installation Orange: spares

Milestones – DFHx #1

DFH – Manufacture DFHx #1 2020

- Test Proto assemble & cold test DFHx with current leads, 100m SC link & DFX in standalone configuration in SM18. 2021
- String (re)assemble* & cold test (as above) as cold powering system to HL 2022-2023 Triplet String in SM18.
 - Spare Operational spare with SC link 2024 attached (DFX proto removed).

*will be possible to keep DFH & SC link attached after the 'Test Proto'.

DFHx sub-components

Uppsala Collaboration

Milestones – DFHx & DFHm

												Da	tes cohe	erent with	n WP6a	global p	anning
	2019			2021		20	22		2023								
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
DFHx #1	Design dev	velopment															
DFx #1	Detail drg	Cryostat N	Assy Cern ProtoTest					Strin	ig Assei	mbly	String Test						
DSHx #1	MgB2 cabl	e & Link Cry															
DFHm #1,2,3,4,5			Design dev	elopment/			Series OK			#1	#2	#3	#4	#5			
DFHx #2,3,4,5							Series OK		#2		#3	#4	#5				
(

- Milestones are indicative need to be confirmed within the Uppsala Collaboration Agreement
- Assembly of DFHx #1 will provide feedback for optimization of the series units
- Each series DFH is assembled and cold tested before installation in the LHC tunnel.
- The margin between the Proto Test and String Test brings contingency for the former, but planning slippage would influence the DFH series production and testing

DFHx Design Development

Today	Design phase 1	Design phase 2
CDR 🗸	Tech* & Interface spec,	DDR,
3D model 🗸	Instrumentation PIDs, 🗸	Manu 2D drgs,
3D mock-up 🗸	Integration studies,	Safety file*,
Func spec 🗸	PED calcs* & 3D iteration,	PED report*,
Interfaces 🗸	Risk analysis,	Manu/insp plan,
Integration ×	Assembly procedure 🗸	PRR (with Uppsala).

*Compliance with: Cern safety rules, GSI-M-04 (cryo), PED 2014/68/EU.

Roles:	Coordination	P. Cruiks
	Engineering	Y. Lecero
	Design	R. Beter
	Integration	P. Fessia
	Transport & handling	C. Bertor
	MgB2 & HTS splices	J. Fleiter
	Warm powering	M. Martir
	Cryogenics	S. Claud
	Quench protection	F. Rodrig
	Safety	V. Parma

Cruikshank Lecercq Betemps Fessia Bertone Fleiter Martino Claudet

F. Rodriguez-Mateos

. Parma, T. Otto.

Priorities:

- Restart DFH technical meetings in parallel with integration studies.
- Create a planning with above phases.
- Identify resources for PED analysis.
- Produce specification documents.

Design development – DFH Integration

- A lot of work to do for integration:
 - Infrastructure Tunnel geometry; handling, handling tooling, transport and installation routing; installation sequencing with respect to already installed infrastructure and equipment; services (EL, HVAC), access;
 - Interfaces warm powering, machine protection, cryogenics, vacuum, controls, cabling, HVAC, metal structures, racks
 - Operation preventive maintenance; removal and repair scenarios considering impact on infrastructure and other equipment,....
- Integration studies will start immediately after the CDR
- Integration solutions and the reasoning behind retained choices shall be documented.

Design Development - DFHx

Draft 14/11/2019 v1																				
		Nov	Nov	Dec	Dec	Dec	Jan	Jan	Jan	Jan	Feb	Feb	Feb	Feb	March	March	March	March	March	April
Activity	Pilot	wk 47	wk 48	wk 49	wk 50	wk 51	wk 2	wk 3	wk 4	wk 5	wk 6	wk 7	wk 8	wk 9	wk 10	wk 11	wk 12	wk 13	wk 14	wk 15
Integration WP6a	Paolo																			
Integration DFHx	Paolo/Paul									R										
- Warm powering	Michele									Int										
- Cryo	Serge									Int										
- Transport	Caterina									Int										
- Handling	Caterina									Int										
- EN/EL, HVAC	Paolo									Int										
- Machine protection	Felix							Int												
- Splice repairs	Jerome							Int												
Mock-up trials	Jerome																			
Func Spec	Paul		V																	
Tech Spec	Paul, Yann									V										
Interface Spec	Paul, Yann									V										
Instrumention PID	JF,SC,FRM					V														
PED calcs	TBD										V									
3D model updates	Robin									V										
PED report	TBD																	V		
DDR	WP6a											R								
Detail drawings	Robin																		V	
Assy drawings	Robin																	V		
Manu & insp plan	Yann & Upp																			
Safety File	PC, VB, TO																		V	
PRR	WP6a & Upp																			R
V- documents released																				
Int - interfaces agreed																				
R - Review																				

Preparing for DFH cryostat manufacture

- Build the relationship with the Uppsala Collaboration
 - Uppsala Uni team contacts at Fermilab, CDR, regular dialogue via teleconference (TBD)
 - Uppsala industrial partner visits to Cern (next one 10th December), visits to Sweden (to plan).
- Formalise the Uppsala Collaboration
 - Finalise the Agreement with scope of supply, deliverables and dates (December)
 - Agree the communication lines between Cern and the Collaboration.
- Knowledge exchange with the Uppsalla Collaboration
 - Identify missing competences (if any) and facilitate a dialogue with TE and EN technical groups as required eg bestpractice solutions (CRG, MSC, EN-MME workshop, etc)
 - Integrate solutions from the University and industrial partner.
 - Provide opportunities for learning with Cern teams.
 - Collaboration shall contribute to the DDR.
 - Collaboration shall play a leading role in the PRR.
- Manage & share the evolution of cryostat interfaces
 - Documents and drawings for internal interfaces current leads & SC link
 - Documents and drawing for <u>external</u> interfaces handling, warm powering, cryo, instrumentation.

DFHx #1 Cryostat manufacturing & assembly

	2019		20	2021					20	22		2023					
	Q4	Q1	02	03	04	01	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
DFHx #1	Design dev	/elopmen															
DFx #1	Detail drg	Cryostat	Manufacturi	Assy Cern	ProtoTest	otoTest			Strin	ng Assei	mbly	String Test					
DSHx #1	MgB2 cabl	le & Link C															

- Assembly of the DFHx #1 cryostat can't be made without the DSHx link or HTS current leads
- Trial assembly of DFHx cryostat (without lip weld execution) shall be performed in industry using rail system.
- Cern may provide subcomponents for trial assembly or instrumentation for final integration.
- The methodology to ensure PED compliance of the helium pressure vessel must be agreed.
- Technology experts responsible for the DFHx assembly works at Cern (splice, welding, instrumentation, testing, etc) can provide advice on technical solutions being implemented in the production of the cryostat.
- Assembly validation at Cern provides the go-ahead for DFH series production.
- Preparation of infrastructure and resources for the DFHx #1 assembly works at Cern will begin Q3 2020.

What can Uppsala & industrial partner already do ?

- Follow the design development and provide feedback on solutions
- Review factory infrastructure needs for the manufacturing, assembly and testing area
 - Separation from incompatible co-activities, handling, etc.
- Seek potential suppliers of long lead items
 - Bellows, Forged material, MLI, others.
- Study approach to PED conformity assessment
 - Welder and welding qualification, NDT, NoBo advice, strategy for subassemblies
- Review approach to leak testing
 - Work with sub-contractor, train personnel, buy testing equipment, etc
- Review approach to cleaning
 - Facilities required, handling, training, etc.
- Evaluate if personnel can benefit from a short stay at Cern
 - Techniques: MLI, insulating supports, leak testing, cleaning, clean (HV) assembly, auto welding & cutting solutions, etc.
- Prepare the quality assurance follow-up
 - Establish contact with the Cern QA representative
 - Prepare the Manufacturing and Test Folder

11

Summary

Milestones

- DFHx #1 and DFH series milestones are integrated into the WP6a planning
- Delivery dates need to be finalised and included in Uppsala Collaboration agreement.

Design Development

- Design development is split in 2 phases.
- An experienced Cern team is identified, however resource for PED analysis is missing.
- The timescale can only achievable with an intensive effort & strong availability of resources.
- A regular technical meeting will be restarted
- Involvement of the Collaboration in the design development can be beneficial for all parties, and will smoothen the transition to manufacturing.

Cryostat Production

- The DFHx #1 cannot be fully assembled in industry but trial assembly will be performed
- Approach for PED conformity assessment needs to be solved
- The teams that will assemble and integrate the cables and leads at Cern can provide advice.
- Preparation ideas for the industrial partner are listed.

Thanks for your attention

DFH Conceptual Design Review, 15th Nov 2019 – Paul Cruikshank