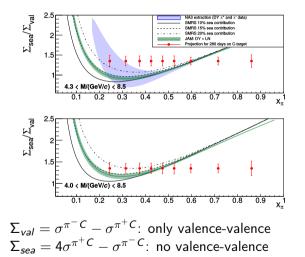
Drell-Yan programme and requirements

$\label{eq:Vincent Andrieux} \mbox{ on behalf of COMPASS}{++/AMBER group}$

University of Illinois at Urbana-Champaign CERN

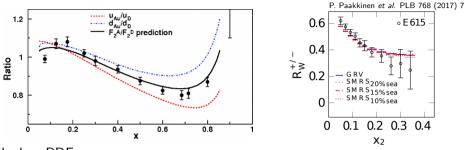
COMPASS Front-end, Trigger and DAQ workshop March 2nd-3rd

Emergence of the hadronic mass



How to explain the origin of the mass of composite hadrons?

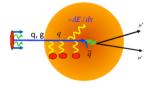
Knowledge of the nucleon and the **pion PDFs** are **fundamental to understand the hadrons mass budget**.


Let us study their structure!

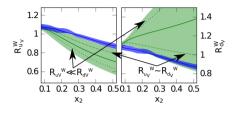
Measure of Pions structure

- Aim at the first precise direct measurement of the pion sea contribution
- Collect at least a factor 10 more statistics than presently available

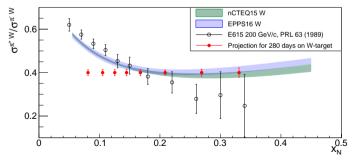
Study nuclear effects



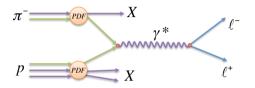
Nuclear PDFs:


- Flavour dependence of nPDF (unconstrained by DIS data)
- Applicability of pion-induced DY data validated

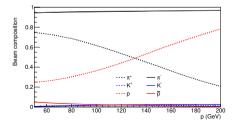
Parton energy loss:


- Particularly important for low $\sqrt{s}
 ightarrow$ fixed target
- Important input also to interpret heavy ion data

EMC effects



Using two π beam charges and two targets, one can add constraints on the EMC effect and flavour dependence



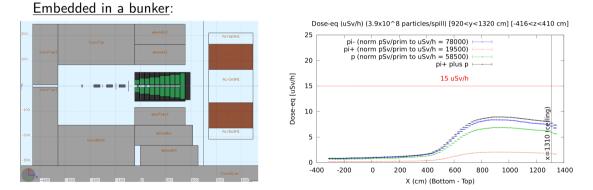
Mar.-2020

Process: Drell-Yan lepton pair (and Charmonia) productions

Beam: M2 Beam line

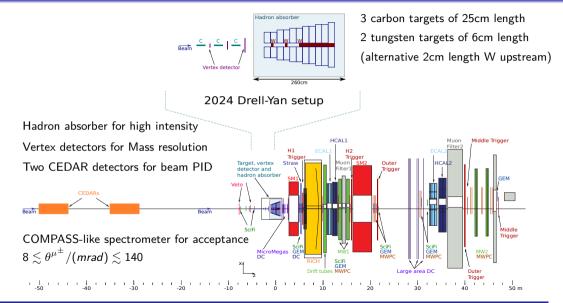
- Theory well known
- Access quarks structure of both projectiles Caveat:
 - Low cross-section
 - Limited range of pure contribution

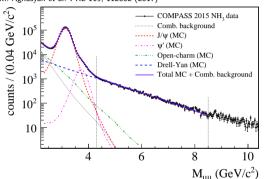
- High intensities available (limited by RP)
- Almost pure π^- beam (97% @ 190 GeV)
- Reasonable contribution of π^+ (24% @ 190 GeV)


Choice of targets and shielding

Targets:

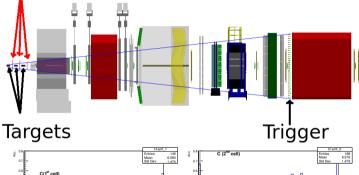
Carbon:


3×25 cm
λ_I=52 cm

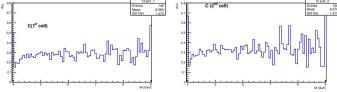

Tungsten: • 2 cm and 2×6 cm • $\lambda_I = 11$ cm

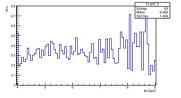
Expected intensity: $1.8 \times 10^8 \text{s}^{-1}$

Mar.-2020



M. Aghasyan et al. PRL 119, 112002 (2017)


Degradation of spectrometer resolution due to the absorber \rightarrow Loss of Drell-Yan events $\rightarrow \psi'$ signal un-exploitable


Restore the performances with a system of vertex detectors to cancel the effect of multi-scattering

New detectors

- Size: from 10×10 cm² to 40×40 cm²
- Ideally also cover beam area (luminosity)
- Rough acceptance flat $vs \ M_{\mu\mu}$ and around 30%

Mar.-2020

Required performance

Main difficulty for the reconstruction is the multiplicity: ${\sim}20 \mbox{ tracks/events}$

First Carbon targe

 979.3 ± 16

1024 + 89

0.02708 ±0.0017

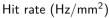
0 1215 ±0 0026

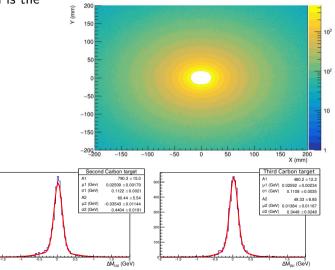
-0.018 ±0.009

0 4485 ±0 0175

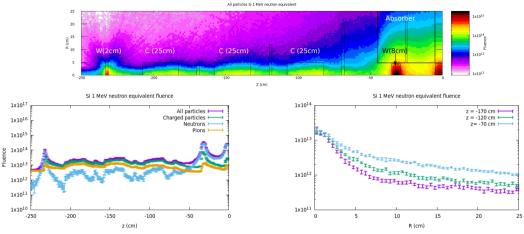
ΔM.... (GeV)

A1


111 (GeV)


of (GeV)

u2 (GeV


g2 (GeV)

- \bullet Hit rates: \sim 10 kHz/mm^2
- Time resolution: a few ns
- Spacial resolution $< 200 \mu m$ Due to small level arm
- Ideally, no dead-zone
- ightarrow Goal: $\delta M_{\mu\mu} < 100$ MeV

Radiation environment for the vertex detectors

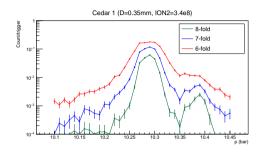
• Estimate for 40×10^{13} pions, *i.e.* 1 year of data taking with $I = 1.8 \times 10^8 \text{s}^{-1}$

- Environment hostile but not incompatible with Silicon technology: ALPIDE, RD50
- Solution to the vertex detection system will be a combination of different technology

Beam PID

Need to tag Pions @ 190 GeV:

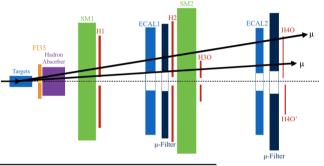
- discriminate K and p for h^- beam
- Identify π (24%) in h^+ beam


Idea: use 2 CEDARs of 8 MAPMTs each

Challenge:

- up to 40 MHz particles to tag
- Efficiency larger than 90%

COMPASS 2018 with \sim 70 MHz beam intensity:


- Operational but low efficiency based on majority signal (beam divergence)
- $\rightarrow\,$ Require a low material budget detector upstream of CEDARs

Trigger requirement and expected rates for the DAQ

Trigger: Horizontal slabs of scintillator for target pointing as in COMPASS ...

- 1 system in LAS (H1 & H2)
- 2 systems in SAS
 - Outer (H3 & H4)
 - Middle (not shown)
- \ldots + some tracking information and no veto system

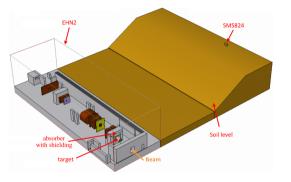
Trigger (COMPASS 2018)	LASLAS	OLAS	MLAS
w. Veto (kHz)	22.9	1.5	0.7
w/o. Veto (kHz)	52.0	33.3	10.4

First estimate \sim 150 kHz and without DAQ dead-time

Vincent Andrieux (UIUC/CERN)

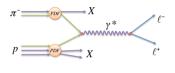
Mar.-2020

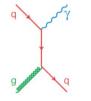
- Nice measurements to come
- Vertex detection system is essential
- Detector and Front-End should be radiation hard
- DAQ should be able to digest about 150 kHz


BACKUP

Radio-protection consideration

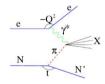
Supervised Area:


- 6 mSv/y
- Low occup. (<400h/y): 15 μ Sv/h
- Working place (2 kh/y): 3 $\mu {\rm Sv/h}$


Non-designated area:

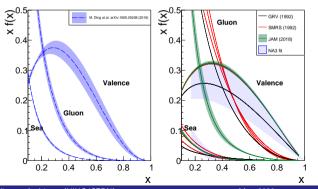
- 1 mSv/y
- Low occup. (<400h/y): 2.5 μ Sv/h
- Working place (2 kh/y): 0.5 $\mu Sv/h$

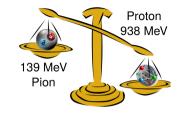
Drell-Yan:

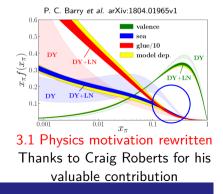

Prompt photon production:

- 90's: NA3, NA10, E615
- 10's: COMPASS-II
- 20's: New Experiment

- 90's NA24, W70
- 20's New experiment

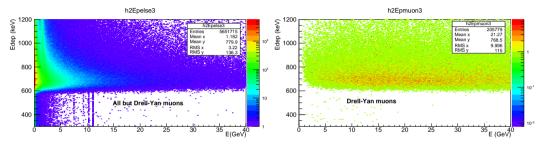

DIS with leading N:




- 90's: H1, ZEUS
- 10's: JLAB TDIS
- 30's: EIC

Pion structure

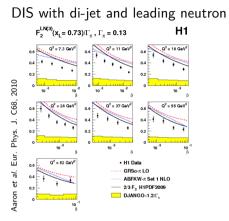
- Recent renewed of interest
 - Reanalysis of old data with NLL (agreement with DSE)
 - Emergence of the mass
- Limited knowledge from old data (DY, prompt photon, TDIS)


Vincent Andrieux (UIUC/CERN)

Mar.-2020

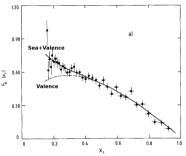
19/15

- \bullet with current beam intensities and RP limits: $7\times 10^7/s$ total beam flux
- and a super-cyle: 1 spill every 26s
- exploitable spills (stability beam and apparatus, analysis cut): 65%
- CEDARs: 90% efficiency

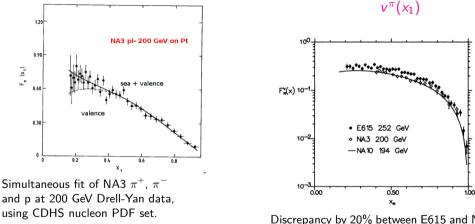

Can we discriminate some hits to facilitate the reconstruction?

Cannot reduce the hit multiplicity with a cut on the amplitude with a FI detector

Since we have to deal with that, I will try now to reconstruct tracklets in order to have more than 3 tracks attached to the vertex (beam+2muons)


How to access the sea

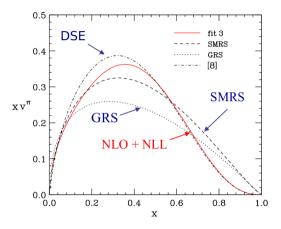
- Wide x coverage
- Estimation of pion flux introduce a strong model dependence


Drell-Yan NA3

- Limited statistics: 4.7k $\pi^-\text{-event}$ (shown) and 1.7k $\pi^+\text{-event}$
- Heavy nuclear target (Pt)

Pion Structure Function: $F_{\pi}(x_1)$

NA3 Coll.; Z.Phys.C 18 (1983) 281-287

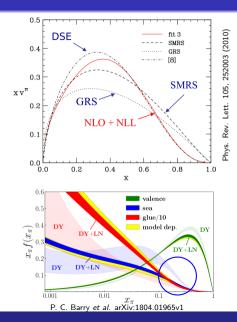

Discrepancy by 20% between E615 and NA3/NA10 E615 Coll.; Phys.Rev. D **39** (1989) 92-122

Left: Curve scaled with $K_{factor} = 2.3$; Right: Data point corrected by K_{factor}

Mar.-2020

Status of the pion structure at mid-large x

- Recent reanalysis at NLL
- Agreement resstored between DSE and dat
- Only valence quark distributions are fitted
- Sea and gluon from GRS

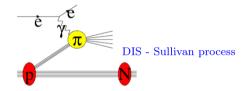


Renewed interest in pion structure

- Recent reanalysis at NLL
- Agreement restored between DSE and data
- Sea and gluon from GRS

- First MC global QCD analysis ("model dependence")
- Hera data included
- Clear impact on sea and gluon distribution

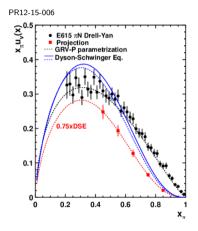
Direct data would constrain the circled area and check the method.



Expected statistics with beam time sharing π^+ : π^- =3:1 for 280 days

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/ c^2)	DY events
E615	20cm W	252	π^+ π^-	$\begin{array}{c} 17.6 \times 10^{7} \\ 18.6 \times 10^{7} \end{array}$	4.05 - 8.55	5,000 30,000
NA3	30cm H_2	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.1 - 8.5	40 121
	6cm Pt	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.2 - 8.5	1,767 4,961
NA10	120cm D ₂	286 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.35 - 8.5	7,800 3,200
	12cm W	286 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.35 - 8.5	49,600 29,300
COMPASS 2015 COMPASS 2018	110cm NH_3	190	π^{-}	$7.0 imes10^7$	4.3 - 8.5	35,000 52,000
This exp	75cm C	190	π^+	$1.7 imes 10^7$	4.3 - 8.5 4.0 - 8.5	21,700 31,000
		190	π^{-}	$6.8 imes10^7$	4.3 - 8.5 4.0 - 8.5	67,000 91,100
	12cm W	190	π^+	0.2×10^7	4.3 - 8.5 4.0 - 8.5	8,300 11,700
		190	π^{-}	$1.0 imes10^7$	4.3 - 8.5 4.0 - 8.5	24,100 32,100

Tagged DIS at JLab


• Same approach as H1 and Zeus:

- Test of pion cloud
- Caveat: Model depedence from the unknown pion flux

Provide complementary data at large x

Same process is also forseen for the future EIC to reach very low \boldsymbol{x}

Target choice and sea-valence separation

With π^+ and π^- beam and isoscalar target:

$$\sigma(\pi^+ d) \propto \frac{4}{9} [u^{\pi} \cdot (\bar{u}_s^p + \bar{d}_s^p)] + \frac{4}{9} [\bar{u}_s^{\pi} \cdot (u^p + d^p)] + \frac{1}{9} [\bar{d}^{\pi} \cdot (d^p + u^p)] + \frac{1}{9} [d_s^{\pi} \cdot (\bar{d}_s^p + \bar{u}_s^p)]$$

$$\sigma(\pi^{-}d) \propto \frac{4}{9} [u_{s}^{\pi} \cdot (\bar{u}_{s}^{p} + \bar{d}_{s}^{p})] + \frac{4}{9} [\bar{u}^{\pi} \cdot (u^{p} + d^{p})] + \frac{1}{9} [\bar{d}_{s}^{\pi} \cdot (d^{p} + u^{p})] + \frac{1}{9} [d^{\pi} \cdot (\bar{d}_{s}^{p} + \bar{u}_{s}^{p})]$$

- Assumption:
 - Charge conjugation and SU(2)_f for valence: $u_v^{\pi^+} = \bar{u}_v^{\pi^-} = \bar{d}_v^{\pi^+} = d_v^{\pi^+}$
 - Charge conjugation and SU(3)_f for sea:

$$u_s^{\pi^+} = \bar{u}_s^{\pi^-} = u_s^{\pi^-} = \bar{u}_s^{\pi^+} = \bar{d}_s^{\pi^+} = d_s^{\pi^+} = d_s^{\pi^-} = d_s^{\pi^+} = s_s^{\pi^+} = s_s^{\pi^-} = \bar{s}_s^{\pi^+} = \bar{s}_s^{\pi^-}$$

- Two linear combination
 - Only valence sensitive: $\Sigma_v^{\pi D} = -\sigma^{\pi^+ D} + \sigma^{\pi^- D} \propto \frac{1}{3} u_v^{\pi} (u_v^p + d_v^p)$
 - Sea sensitive : $\Sigma_s^{\pi D} = 4\sigma^{\pi^+ D} \sigma^{\pi^- D}$

Systematics (Sec.3.6)

Effects	Comments
Beam momentum	momentum spread $\sim 2\% ightarrow$ negligeable
Kaon PID	${\sf K}/\pi$ $<\!\!6\%$ and highly suppressed ${\sf K}^+$
Proton PID	Easy to discriminate
Re-interaction	Not negligeable, evaluation ongoing
Trigger efficiency	monitored with Calorimeter trigger
Acceptance	a few percents (ongoing)
Luminosity	<5%
Nuclear effects	\sim 4% on $\Sigma_{sea}/\Sigma_{val}$

Expected to be smaller than the statistical error bars